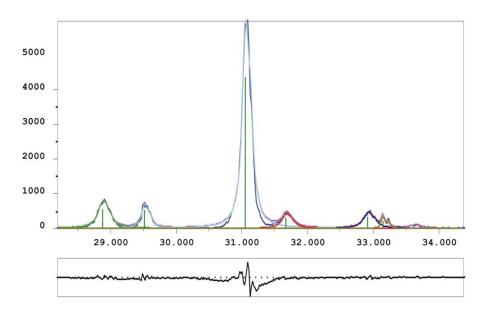


## Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Качественный рентгенофазовый анализ. Базы данных ICDD+COD.


# Наши планы 2025

| Тип         | Nº | Тема                                     | Дата       |
|-------------|----|------------------------------------------|------------|
| Лекция      |    | 9Качественный РФА                        | 06.10.2024 |
| Лекция      | 1  | 0Индицирование дифрактограмм             | 08.10.2024 |
|             |    | Профильный анализ и                      |            |
| Практикум   |    | <b>1</b> индицирование                   | 13.10.2024 |
| Лекция      | 1  | 1Решение структур                        | 15.10.2024 |
| Лекция      | 1  | 2Метод Ритвельда                         | 20.10.2024 |
|             |    | Дифракция на несовершенных               |            |
| Лекция      | 1  | 3 <mark>кристаллах</mark>                | 22.10.2024 |
| Практикум   |    | <b>2</b> Анализ методом ЛеБеля + решение | 27.10.2024 |
| Практикум   |    | ЗУточнение структуры                     | 29.10.2024 |
| Лекция      | 1  | 4Количественный РФА                      | 03.11.2024 |
| Контрольная |    | <b>2</b> Вторая часть курса              | 05.11.2024 |

# Содержание

- 1. Качественный РФА.
- 2. Базы данных ICDD+COD
- 3. Некоторые практические аспекты

# 0.1 Профильный анализ - результаты



## Профильный анализ:

$$I_{theor}(2\theta) = B(\theta) + \sum_{i} P_{i}(2\theta_{i}, I_{i}, H_{i}, 2\theta)$$

## Наилучшая оценка качества уточнения

- по виду разностной дифрактограммы!

#### Критерии качества

$$R_{P} = \frac{\sum_{i} \left| I_{meop} - I_{_{\mathfrak{I}KCN}} \right|}{\sum_{i} I_{_{\mathfrak{I}KCN}}}$$

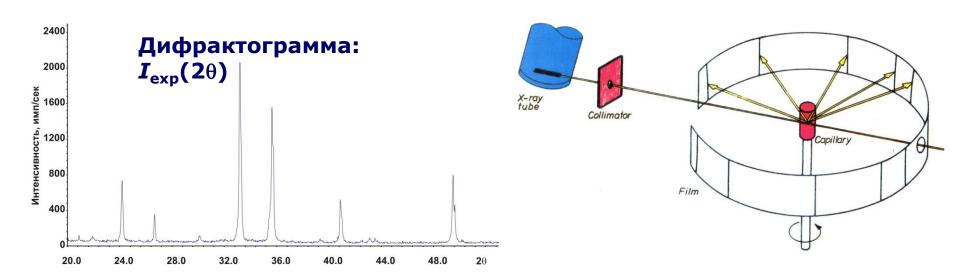
$$R_{wP} = \left[\frac{\sum_{i} w_{i} (I_{meop} - I_{\mathfrak{K}Cn})^{2}}{\sum_{i} w_{i} (I_{\mathfrak{K}Cn})^{2}}\right]^{\frac{1}{2}}$$

$$\chi^{2} = \frac{\sum_{i} w_{i} \left(I_{meop} - I_{skcn}\right)^{2}}{n - p}$$

(n - число точек, p - число уточняемых параметров)

Для качественной рентгенограммы  $R_{\rm P} \sim 1-3~\%,~\chi^2=0.8-2$ 

# 0.1 Профильный анализ - результаты


## Результат профильного анализа (файл \*.pft в WinXPow)

| !   | D      | 2Theta  | I(rel) | I(abs) | I(int) | FWHM   | Н  | K  | L |   |
|-----|--------|---------|--------|--------|--------|--------|----|----|---|---|
| 14. | 248472 | 6.1981  | 3.04   | 33     | 7.68   | 0.1781 | 0  | 1  | 0 |   |
| 9.  | 814859 | 9.0027  | 6.16   | 66     | 14.78  | 0.1694 | 1  | 0  | 0 |   |
| 9.  | 587812 | 9.2164  | 2.66   | 28     | 6.36   | 0.1688 | 1  | 1  | 0 |   |
| 7.  | 140107 | 12.3866 | 4.38   | 47     | 9.89   | 0.1596 | -1 | 1  | 0 | М |
| 5.  | 121028 | 17.3024 | 24.07  | 258    | 50.16  | 0.1472 | -1 | -1 | 1 |   |
| 4.  | 758203 | 18.6331 | 25.94  | 278    | 52.98  | 0.1443 | 0  | 1  | 1 |   |
| 3.  | 736961 | 23.7913 | 68.18  | 729    | 130.34 | 0.1350 | 0  | -3 | 1 |   |

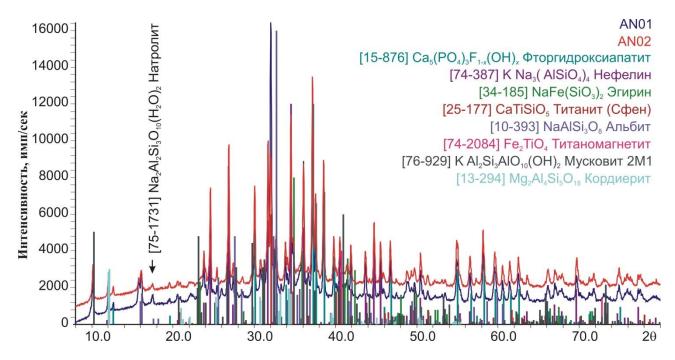
- 1. Межплоскостное расстояние
- 2. Угол 20
- 3. Относительная интенсивность (%)
- 4. Абсолютная интенсивность (в максимуме, за вычетом фона)
- 5. Интегральная интенсивность
- 6. Полуширина
- 7. Индексы *h,k,l* после индицирования ©

## 1. Физические основы РФА.

- 1. Дифракция рентгеновского излучения (РИ) когерентное упругое рассеяние РИ с интерференцией вторичных волн.
- 2. Амплитуда дифрагировавшего РИ пропорциональна Фурье-компоненте электронной плотности.
- 3. Для периодической системы монокристалла Фурье образ состоит из узких максимумов.
- 4. Для порошка 1D проекция 3D картины.



## 1. Физические основы РФА.


- 1. Распределение  $\rho(r)$  уникально для каждого соединения.
- 2.  $\rho$ (r) ↔ расположение атомов
- 2. От периодичности  $\rho(r)$  (параметров ячейки кристалла) зависит положение максимумов.
- 3. От вида функции  $\rho(r)$  (распределения атомов) внутри ячейки зависит интенсивность максимумов.
- 4. Ключ к РФА интенсивность и положения максимумов. Определить их можно с использованием профильного анализа.

$$2d_{hkl}\sin\theta = n\lambda$$

| ! | D        | 2Theta  | I(rel) | I (abs) | I(int) | FWHM   | H  | K  | L |   |
|---|----------|---------|--------|---------|--------|--------|----|----|---|---|
| 1 | 4.248472 | 6.1981  | 3.04   | 33      | 7.68   | 0.1781 | 0  | 1  | 0 |   |
| ! | 9.814859 | 9.0027  | 6.16   | 66      | 14.78  | 0.1694 | 1  | 0  | 0 |   |
| ! | 9.587812 | 9.2164  | 2.66   | 28      | 6.36   | 0.1688 | 1  | 1  | 0 |   |
| • | 7.140107 | 12.3866 | 4.38   | 47      | 9.89   | 0.1596 | -1 | 1  | 0 | M |
| ! | 5.121028 | 17.3024 | 24.07  | 258     | 50.16  | 0.1472 | -1 | -1 | 1 |   |
|   | 4.758203 | 18.6331 | 25.94  | 278     | 52.98  | 0.1443 | 0  | 1  | 1 |   |
| : | 3.736961 | 23.7913 | 68.18  | 729     | 130.34 | 0.1350 | 0  | -3 | 1 |   |

## 1. Физические основы РФА.

- 1. Дифрактограмма = «отпечаток пальца» кристаллической фазы.
- 2. Дифрактограмма смеси фаз = суперпозиция дифрактограмм отдельных фаз.
- 3. Относительные интенсивности максимумов от разных фаз связаны с содержанием фаз в смеси ключ к количественному РФА.
- 4. Как по виду дифрактограммы определить, что за фазы присутствуют в смеси? Сравнение с дифрактограммами стандартов.

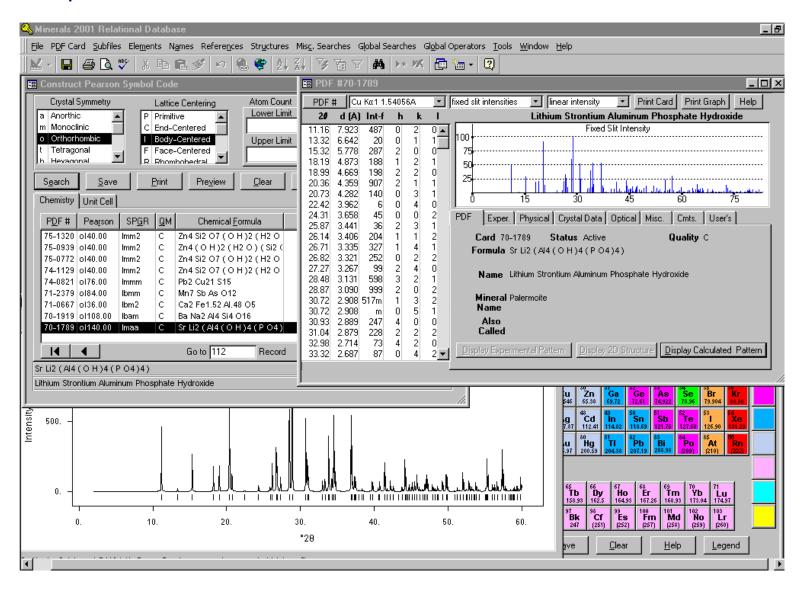


# A comprehensive database of powder diffraction patterns – ICDD PDF

(see: www.icdd.com)



#### Release 2005


|                        | PDF-2   | PDF-4+  | PDF-4     | PDF-4      |
|------------------------|---------|---------|-----------|------------|
| <b>Entry Source</b>    |         | (       | Minerals) | (Organics) |
| Experimental           | 96,493  | 96,493  | 9,083     | 26,792     |
| FIZ                    | 68,404  | 59,223  | 7,507     | 1,202      |
| CCDC                   | 0       | 0       | 0         | 237,200    |
| NIST                   | 9,802   | 5,565   | 70        | 14         |
| MPDS                   | 0       | 78,769  | 1,166     | 0          |
| Total No. of Data sets | 174,699 | 240,050 | 17,826    | 265,208    |

#### (International Centre for Diffraction Dat

# БД PDF-2

- Постоянно редактируется, дополняется и обновляется
- Каждый год добавляется 2,500 экспериментальных и несколько тысяч расчетных рентгенограмм. Компьютерный поиск начиная с 1985 г.
- Содержит рентгенограммы чистых фаз
- Выпуск 2013г. содержит ~ 300,000 активных рентгенограмм
- Сейчас доступна в двух форматах:
  - DVD-ROM диск (основной формат)
  - Книги (Sets 1-51 только
     экспериментальные рентгенограммы)

#### Новая версия базы данных - ICDD PDF-4



Каждому стандарту присваивается уникальный номер: XX-YYY-ZZZZ (шкаф – ящик – номер).



#### 44-258

| CLCD                                                                                                                                    | d, <b>0</b>           | Int.    | hkl        | d, <b>0</b>      | Int.             | hkl            |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|------------|------------------|------------------|----------------|
| SbSBr                                                                                                                                   | 6.296                 | 26      | 110        | 1.9829           | 22               | 002            |
|                                                                                                                                         | 4.876                 | 3       | 020        | 1.8970           | 5                | 150,420        |
| Antimony Bromide Sulfide                                                                                                                | <b>4.195</b><br>4.119 | 27<br>9 | 120<br>200 | 1.8902<br>1.8540 | 2<br>13          | 112<br>241,331 |
|                                                                                                                                         | 3.794                 | 16      | 210        | 1.8340           | <1               | 401            |
| Rad. CuKa <sub>1</sub> λ 1.54056 Filter Mono. d-sp Diff.                                                                                | 3.7 94                | 10      | 210        | 1.0272           | <b>\1</b>        | 401            |
| Cut off 14.7 Int. Diffractometer I/I <sub>cor.</sub> 3.02                                                                               | 3.673                 | 6       | 011        | 1.7955           | 12               | 411            |
| <b>Ref.</b> Antipov, E., Putilin, S., Shpanchenko, R., Moscow State                                                                     | 3.354                 | 4       | 111        | 1.7616           | 5                | 250            |
| University, Moscow, Russia. ICDD Grant-in-Aid. (1993)                                                                                   | 3.145                 | 9       | 220        | 1.7115           | <1               | 151            |
| Sys. Orthorhombic S.G. Pnam(62)                                                                                                         | 3.023                 | 1       | 130        | 1.6774           | 1                | 222            |
| <b>a</b> 8.2370(5) <b>b</b> 9.7491(6) <b>c</b> 3.9646(3) <b>A</b> 0.8449 <b>C</b> 0.4067                                                | 2.8818                | 100     | 121        | 1.6562           | 3                | 431            |
| $\alpha$ $\beta$ $\gamma$ $\mathbf{Z} 4$ <b>mp</b> 330 $d$                                                                              |                       |         |            |                  |                  | 0 -0 -10       |
| <b>Ref.</b> Ibid                                                                                                                        | 2.8550                | 15      | 201        | 1.6246           | 2 3              | 060,510        |
|                                                                                                                                         | 2.7413                | 12      | 211<br>310 | 1.5935           | 3<br>4           | 160,431        |
| $\mathbf{D_x} = 4.876$ $\mathbf{D_m}$ SS/FOM $F_{30} = 158(.005,36)$                                                                    | 2.6430<br>2.5507      | 16<br>3 | 230        | 1.5860<br>1.5730 | 4                | 312<br>440     |
| Color Orange                                                                                                                            | 2.5136                | 16      | 031        | 1.5656           | <1               | 232            |
| Pattern taken at 26 C. The sample was provided by Shevelkov, A.,                                                                        | 2.3130                | 10      | 031        | 1.5050           | \1               | 232            |
| Dikarev, E., Moscow State University, Moscow, Russia. CAS#:                                                                             | 2.4641                | 4       | 221        | 1.5380           | 3                | 042            |
| 14794-85-5. Prepared by heating of stoichiometric mixture of Sb, S                                                                      | 2.4369                | 7       | 040        | 1.5266           | 3                | 322            |
| and SbBr <sub>3</sub> in sealed silica tube at 360 C for 10 hours followed by an-                                                       | 2.4037                | 12      | 131        | 1.5116           | 1                | 142,260        |
| nealing at 310 C for 6 days. SbSBr melts with decomposition. Single                                                                     | 2.3919                | 9       | 320        | 1.4762           | <1               | 351            |
| crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima, T. Habinelaura, K. Jan. J. Appl. Phys. 34,600 (1985)]. Silicon used | 2.3366                | 2       | 140        | 1.4692           | 2                | 530            |
| T., Uchinokura, K., <i>Jpn. J. Appl. Phys.</i> , <b>24</b> 600 (1985)]. Silicon used as external standard. PSC: oP12.                   | 2.1002                | _       | 011        | 1 1100           | 2                | 2 42 222       |
| as Catalial standard. I SC. 01 12.                                                                                                      | 2.1992                | 3       | 311        | 1.4408           | 2                | 242,332        |
|                                                                                                                                         | 2.0972<br>2.0594      | 8       | 330<br>400 | 1.4124<br>1.3986 | <1<br><1         | 261<br>360     |
|                                                                                                                                         | 2.0394                | 1 1     | 321        | 1.3779           | 1                | 531            |
|                                                                                                                                         | 2.0477                | 5       | 141        | 1.3713           | $\overset{1}{2}$ | 152            |
| See follwing card.                                                                                                                      | 2.0131                |         | 1-71       | 1.5/15           | _                | 132            |

#### Формат «карточки» (записи о стандарте) PDF-2 в WinXPow.

```
[81-1286]
             PDF-2 Sets 1-99
                                 Quality: C
                                                         Wavelength: 1.540598
Lead Vanadium Oxide Phosphate
Pb3 ( P V 08 )
Rad.: CuKa1 (1.54060)
                           Filter:
                                                        d-sp: calculated
I/Icor.:8.52
                           Cutoff: 17.7
                                                        Int.: calculated
Ref.: Calculated from ICSD using POWD-12++, (1997)
                                                          V(redu): 187.6
Sys.: Rhombohedral
                       S.G.: R-3m (166)
a: 5.64410(20)
                                  c: 20.40310(60)
                                                    C: 3.6149
                 b:
A:
                 B:
                                  C:
                                                    z: 3
                                                               mp:
    7.357
                                 SS/FOM: F30= 999.9 ( .0001, 33)
Dx:
                Dm:
ICSD: 072664
Ref.: Kiat, J.- M., Garnier, P., Calvarin, G., Pinot, M., J. Solid State Chem.,
       103, (1993), 490
                                              Sign:
                                                         2V:
               nwB:
ea:
                               ey:
REM
         TEM 300. // REM
                              RVP.
Hanawalt: 3.13/X 2.82/8 4.75/3 3.53/3 2.10/3 1.68/2 1.88/1 2.20/1 1.77/1 1.63/1
Max-d:
          6.80/1 4.75/3 4.41/1 3.53/3 3.40/1 3.13/X 2.82/8 2.61/1 2.50/1 2.43/1
                            h k 1
                                             d[A]
                                                                      h k 1
   d[A]
           2Theta Int.
                                                     2Theta
                                                             Int.
  6.8010
           13.007
                            0 0 3
                                                     68.986
                                                                      0 0 15
                    10
                                            1.3602
                                                               6
  4.7534
           18.652
                   326
                              0 1
                                                                      1 3 1
                            1
                                            1.3527
                                                     69.425
```

## «Подбазы» БД PDF-2 (на примере ящиков 42 и 50).

| Sub-File           | Entries | Sub-File        | Entries |
|--------------------|---------|-----------------|---------|
| Inorganic          | 43.308  | Zeolites        | 626     |
| Organic            | 16.539  | Explosives      | 149     |
| Metals and Alloys  | 11.630  | Polymers        | 248     |
| Minerals           | 3.954   | Cement          | 360     |
| Forensic Materials | 3.612   | Superconductors | 139     |
| Common Phases      | 3.202   |                 |         |
| As of Set 42       |         |                 |         |

| Sub-File           | Entries | Sub-File        | Entries |
|--------------------|---------|-----------------|---------|
| Inorganic          | 109.864 | Zeolites        | 1.654   |
| Organic            | 23.466  | Explosives      | 190     |
| Metals and Alloys  | 26.921  | Polymers        | 608     |
| Minerals           | 14567   | Cement          | 392     |
| Forensic Materials | 3.722   | Superconductors | 2579    |
| Common Phases      | 3.802   |                 |         |
| As of Set 50       |         | All w/excl      | 118.642 |

## Данные от качестве дифракционного стандарта

#### Знак "\*".

- 1. Химически охарактеризован.
- 2. Интенсивности измерены инструментально.
- 3. Хороший диапазон и сглаженный разброс интенсивностей
- 4. Линии с *d*≤2.50Å : 2.222Å. *d*≤1.200Å : 1.1111Å.
- 5. Нет серьезных систематических ошибок.
- 6. Нет линий с | ∆2θ | ≥0.05°.
- 7. Средняя величина  $|\Delta 2\theta|$  ≤0.03°.
- 8. Нет неиндицированных, примесных линий или линий, не соответствующих погасаниям.

#### Знак "І".

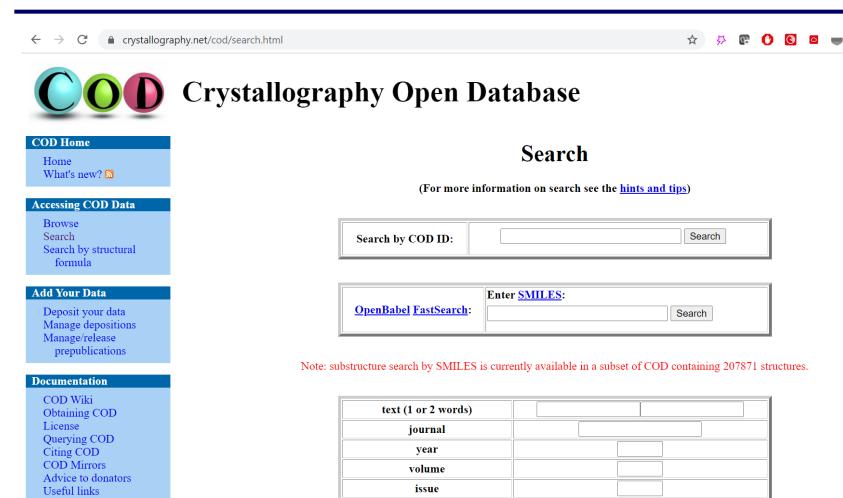
- 1. 1-3,6 выполняются менее жестко.
- 2. Линии с *d*≤2.00Å : 1.111Å.
- 3. Нет линий с | ∆2θ | ≥0.2°.
- Средняя величина |∆2θ|≤0.06°.
- 5. Неиндицированных, примесных линий или линий, соответствующих погасаниям ≤2, среди них нет сильнейших.

## Данные от качестве дифракционного стандарта

#### Знак "О".

- 1. 1-4 могут частично не выполняться.
- 2. Неиндицированых, примесных линий или линий, не соответствующих погасаниям >3.
  - 3. Одна из 3-х сильнейших линий непроиндицирована.

#### Отсутствие знака (В)


1. Не выполняются критерии \*, i, O.

#### <u>Знак "С"</u>.

2. Рентгенограмма рассчитана из структурных данных

| Название                                    | Содержание                   | Центр               |
|---------------------------------------------|------------------------------|---------------------|
| Cambridge Structural Database (CSD)         | Organic,<br>Organo-metallic  | Cambridge<br>UK     |
| Inorganic Crystal Structure Database (ICSD) | Inorganic Materials          | Karlsruhe<br>FRG    |
| NRCC Metals Data File (CRYSTMET)            | Metals and Alloys            | Ottawa<br>Canada    |
| Protein Data Bank<br>(PDB)                  | Biological<br>Macromolecules | Brookhaven<br>USA   |
| NBS Crystal Data<br>NBS (CD)                | Inorganic and<br>Organic     | Gaithersburg<br>USA |

# 2.1 База данных COD.



DOI

https://www.crystallography.net

Методы поиска соответствия «эксперимент – стандарт» - Search/Match

**SQL** 



Исходные данные:  $\{d,I\}$  Параметры поиска:

- 1.  $|\Delta 2\theta|_{max}$
- 2. Минимальная  $I_{\mathrm{exp}}$
- 3. Минимальное число линий соответствия
- 4. Максимальное число пропущенных линий
- 5. ...

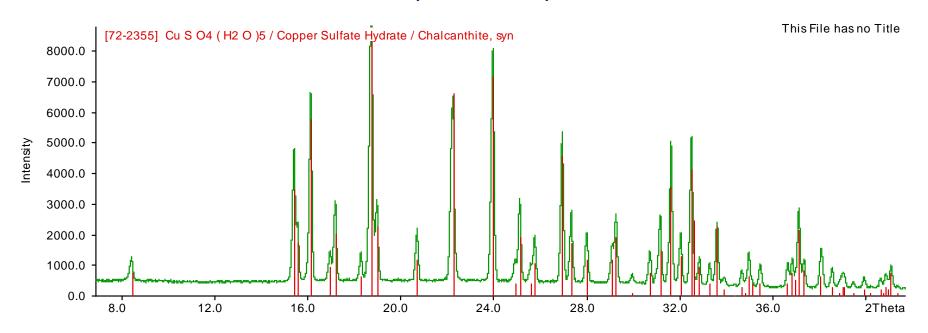
Возможно введение дополнительных ограничений: подбаза, качество...



Исходные данные: *Input* Параметры поиска:

- 1. Сильнейшие линии (3) <u>Hanawalt.</u>
- Линии при малых углах (8 первых) - <u>Fink</u>
- 3. Элементный состав фазы
- 4. Формула, название, минерал, цвет...
- 5. Симметрия, параметры ячейки...
- 6. ...

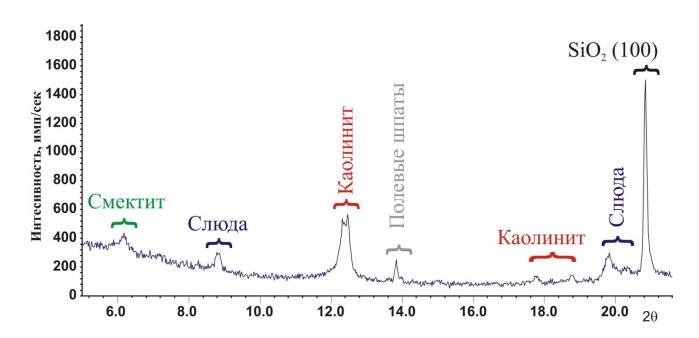
Критерии качества для автоматического поиска.


$$F_{\theta} = 1 - \frac{\sum_{i=1}^{n} \left| \theta_{i}^{std} - \theta_{i}^{exp} \right|}{n_{coinc} \Delta \theta}$$

где *n* - общее число линий на рентгенограмме; std - для стандарта ехр - для наблюдаемой линии

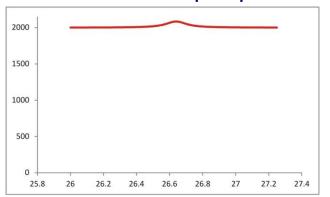
Аналогичный критерий можно ввести и для интенсивностей...

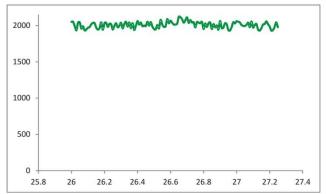
После автоматического поиска результаты по умолчанию упорядочены по  $F(\theta)$ , после ручного – по номеру стандарта

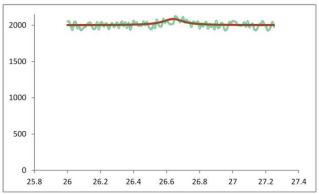

## Финальная стадия поиска – визуальный анализ соответствия «стандарт – эксперимент»



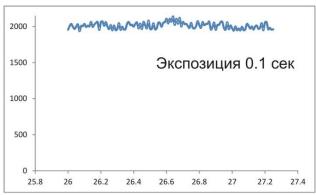
#### Критерии соответствия:

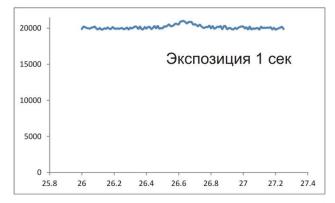

- 1. Все линии стандарта должны присутствовать на экспериментальной дифрактограмме
- 2. Соотношение интенсивностей?
- 3. Качество стандарта \*, I, C
- 4. Химический состав «образец/стандарт»

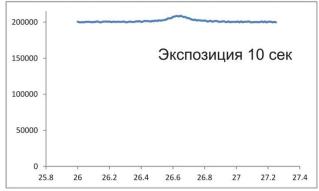

Анализ микропримесей: иногда наблюдается 1-2 рефлекса.



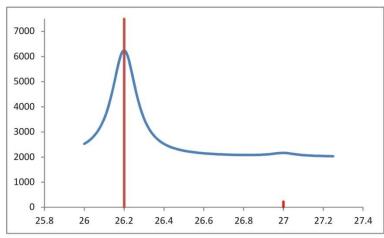

- Многие рефлексы не видны точная идентификация затруднена!
- Легко перепутать с рефлексами от основных фаз.
- Ситуация крайне усложняется при перекрывании рефлексов.
- Будьте особенно аккуратны при определении микропримесей.

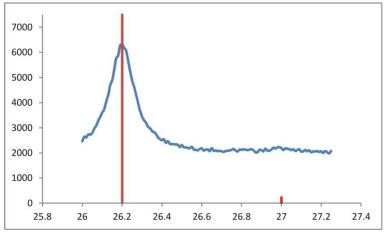

#### Анализ микропримесей: малые интенсивности сигнала



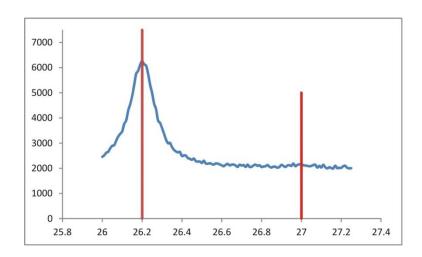







Съемка лучшего качества для анализа микропримесей!

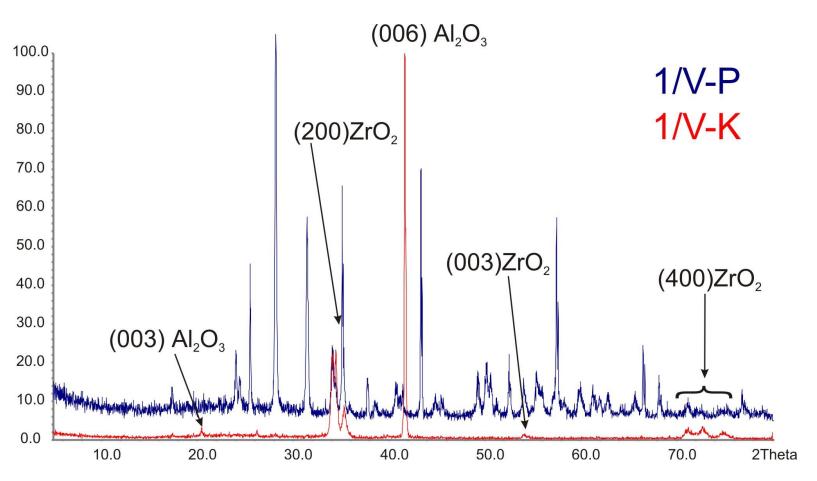





Данные не противоречат присутствию примеси






Примесь, вероятно, отсутствует



Помните про использование всей информации об образце!

Текстура – нарушение случайной ориентации кристаллитов в поликристаллической пробе.



Скол и порошок  $ZrO_2/Al_2O_3/SiO_2$  композита