

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Симметрия обратного пространства.

Содержание

- 0. Краткое содержание предыдущих серий
- 1. Структурная амплитуда как комплексная величина.
- 2. Симметрия в обратном пространстве.

0. Краткое содержание предыдущих серий

1. Рассеивающий фактор (кинематическое приближение):

$$F(\mathbf{q}) = \int_{V} \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

2. Для периодической системы - отдельные максимумы:

$$F(\mathbf{q}) = \sum_{h,k,l} f_{hkl} \mathcal{S}(\mathbf{q} - \mathbf{q}_{hkl})$$

$$\mathbf{q}_{hkl} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$$

$$\mathbf{a}^* = \frac{[\mathbf{b} \times \mathbf{c}]}{\mathbf{a} \cdot [\mathbf{b} \times \mathbf{c}]}, \mathbf{b}^* = \dots$$

3. При этом амплитуда:

$$F_{hkl} = \sum_{j} g_{j} t_{j} (\mathbf{q}_{hkl}) e^{2\pi i (hx_{j} + ky_{j} + lz_{j})} F_{atom}^{j} (\mathbf{q}_{hkl})$$

1.1 Амплитуда и фаза для рассеивающего фактора

Комплексная амплитуда рассеянного излучения:

$$\hat{A}_{hkl} = \hat{A}_0 F_{hkl} = \hat{A}_0 \sum_{j} g_{j} t_{j} (\mathbf{q}_{hkl}) e^{2\pi i (hx_j + ky_j + lz_j)} F_{atom}^{j} (\mathbf{q}_{hkl})$$

Очевидно, что:

$$F_{hkl} = |F_{hkl}|e^{i\varphi_{hkl}} = \sum_{j} A\cos 2\pi (hx_{j} + ky_{j} + lc_{j}) + iB\sin 2\pi (hx_{j} + ky_{j} + lc_{j})$$

Стоит отметить, что в эксперименте мы регистрируем интенсивности:

$$I_{hkl} \propto \left| A_{hkl} \right|^2 \propto \left| F_{hkl} \right|^2$$

Из этого следует, что мы получаем информацию о $|F_{hkl}|$, но не об их фазах

Кстати: в отсутствие аномального рассеяния $F_{
m atom}$ – действительная величина

Каков набор операций пространственной симметрии $F(\mathbf{q})$ для известного набора операций симметрии $ho(\mathbf{r})$?

Вид пространственной симметрии	$ ho(\mathbf{r})$	$F(\mathbf{q})$
	$\rho(\mathbf{r} + \mathbf{t}_{mnp}) = \rho(\mathbf{r})$ $\forall \mathbf{t}_{mnp} = m\mathbf{a} + n\mathbf{b} + p\mathbf{c}$	
Трансляционная симметрия	$\forall \mathbf{t}_{mnp} = m\mathbf{a} + n\mathbf{b} + p\mathbf{c}$	
	$\rho(\mathbf{Ar}) = \rho(\mathbf{r})$	
Закрытые элементы симметрии		
	$\rho(\mathbf{Ar} + \mathbf{t}) = \rho(\mathbf{r})$	
Открытые элементы симметрии		

Пусть существует некоторая операция симметрии А

$$\mathbf{x}'_{atom} = \mathbf{A}\mathbf{x}_{atom}$$

Тогда для рассеивающего фактора:

$$F(\mathbf{q}) = \sum_{j} e^{i\mathbf{q}\mathbf{x_{j}}} F_{atom}^{j}(\mathbf{q})$$

Можно записать аналогичное соотношение в обратном пространстве

$$\mathbf{q}' \leftrightarrow \mathbf{A}^T \mathbf{q}$$

Т.е. симметрия прямого пространства «переносится» в обратное пространство

Самый простой случай – центр инверсии. Тогда F_{hkl} – действительная величина (в предположении действительных $F_{\rm atom}$)

А это действительно так?

$$\mathbf{A}\rho(\mathbf{r}) \equiv \rho(\mathbf{A}\mathbf{r}) = \rho(\mathbf{r})$$

Но тогда:

$$\int_{\Omega} \rho(\mathbf{Ar}) e^{i\mathbf{q}'(\mathbf{Ar})} d(\mathbf{Ar}) = \int_{\Omega} \rho(\mathbf{r}) e^{i\mathbf{q}'(\mathbf{Ar})} d\mathbf{r} = \int_{\Omega} \rho(\mathbf{r}) e^{i(\mathbf{A}^{\mathsf{T}}\mathbf{q})\mathbf{r}} d\mathbf{r} = F(\mathbf{A}^{\mathsf{T}}\mathbf{q})$$

Т.е. для унитарного преобразования мы получили:

$$\mathbf{q}' \longleftrightarrow \mathbf{A}^T \mathbf{q}$$

Трансляционные преобразования отображаются иначе:

$$\int_{\Omega} \rho(\mathbf{r} + \mathbf{t}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} = e^{-i\mathbf{q}\mathbf{t}} \int_{\Omega} \rho(\mathbf{r} + \mathbf{t}) e^{i\mathbf{q}(\mathbf{r} + \mathbf{t})} d(\mathbf{r} + \mathbf{t}) = e^{-i\mathbf{q}\mathbf{t}} F(\mathbf{q})$$

Т.е. для полных трансляций все полносимметрично

Каков набор операций пространственной симметрии $F(\mathbf{q})$ для известного набора операций симметрии $ho(\mathbf{r})$?

Вид пространственной симметрии	$ ho(\mathbf{r})$	$F(\mathbf{q})$
Трансляционная симметрия	$\rho(\mathbf{r} + \mathbf{t}_{nmp}) = \rho(\mathbf{r})$ $\forall \mathbf{t}_{nmp} = m\mathbf{a} + n\mathbf{b} + p\mathbf{c}$	$F(\mathbf{q}) = \sum_{h,k,l} F_{hkl} \delta(\mathbf{q} - \mathbf{q}_{hkl})$
20000 171 10 070140171 1 01414140701414	$\rho(\mathbf{Ar}) = \rho(\mathbf{r})$	$F(\mathbf{A}^T\mathbf{q}) = F(\mathbf{q})$
Закрытые элементы симметрии Открытые элементы симметрии	$\rho(\mathbf{Ar} + \mathbf{t}) = \rho(\mathbf{r})$	

1.2 Закон Фриделя

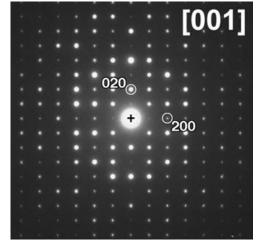
$$F_{hkl} = |F_{hkl}|e^{i\varphi_{hkl}} = \sum_{j} A\cos 2\pi (hx_j + ky_j + lc_j) + iB\sin 2\pi (hx_j + ky_j + lc_j) = A_{hkl} + iB_{hkl}$$

Тогда для дифракционных векторов q=(h,k,l) и q'=(-h,-k,-l) в отсутствие аномального рассеяния

$$A_{hkl}=A_{ar{h}ar{k}ar{l}}$$
 , $B_{hkl}=-B_{ar{h}ar{k}ar{l}}$, $\left|F_{hkl}\right|=\left|F_{ar{h}ar{k}ar{l}}\right|$, $arphi_{hkl}=-arphi_{ar{h}ar{k}ar{l}}$

Из этого прямо следует: $I_{hkl} = I_{ar{h}ar{k}ar{l}}$

Дифракционная картина центросимметрична —————— (закон Фриделя)



- аналогичные законы имеют место и для других дифракционных методов (ED, Neutrons)

2.1 Симметрия в обратном пространстве

Симметрия обратной решетки = Лауэ-класс кристалла (точечная группа + центр инверсии)

Т.о. каждому вектору обратной решетки соответствует ряд эквивалентных – «звезда» векторов

Например, для кубического кристалла:

$$(1,0,0)(-1,0,0)$$

$$(0,1,0)(0,-1,0)$$

$$(0,0,1)(0,0,-1)$$

Фактор повторяемости
$$p_{001} = 6$$

$$(1,1,0)(-1,-1,0)$$

$$(-1,1,0)$$
 $(1,-1,0)$

$$(0,1,1)(0,-1,-1)$$

$$(0,-1,1)(0,1,-1)$$

$$(1,0,1)(-1,0,-1)$$

$$(-1,0,1)$$
 $(1,0,-1)$

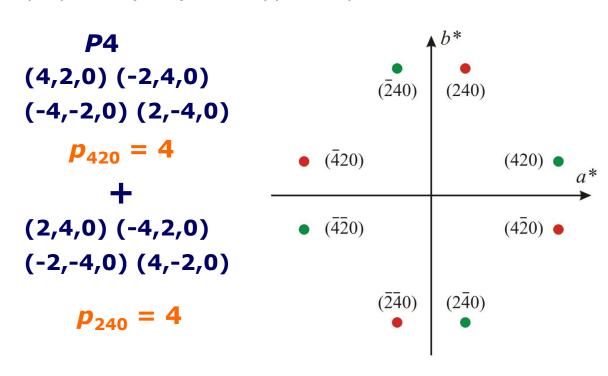
Фактор повторяемости $p_{110} = 12$

2.1 Симметрия в обратном пространстве

Фактор повторяемости зависит не только от сингонии, но и от группы симметрии (точнее, Лауэ-класса) кристалла:

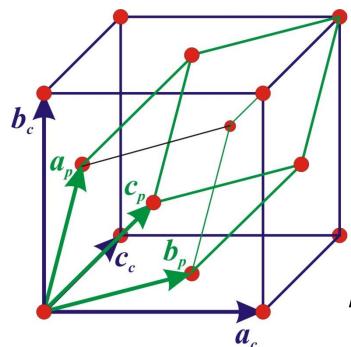
Тетрагональный кристалл, рефлекс (420) на дифрактограмме:

P4mm (4,2,0) (-4,-2,0) (4,-2,0) (-4,2,0) (2,4,0) (-2,-4,0) (2,-4,0) (-2,4,0) $p_{420} = 8$



2.2 Систематические погасания - центрировки

F-центрированная ячейка



Матрица перехода Cryst.→Prim. для базисных векторов:

Матрица перехода для координат (h,k,l) B обратном пространстве:

$$\mathbf{A} = \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{pmatrix} \quad \begin{pmatrix} \mathbf{A}^{-1^T} \end{pmatrix}^{T^{-1}} = \mathbf{A} = \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{pmatrix}$$

Тогда

$$h' = 0.5k + 0.5l$$
, $k' = 0.5h + 0.5l$, $l' = 0.5h + 0.5k$

Очевидно, что h',k',l' должны быть целочисленными.

$$F$$
-центр. I -центр. E азоцентрированная $C:h+k=2n$ $\forall h,k,l$ $h+l=2n$ $\forall h,k,l$ $h+k+l=2n$ $\forall h,k,l$ $h+k+l=2n$ $\forall h,k,l$ $h+k+l=2n$ $\forall h,k,l$ $h+k+l=2n$ $\forall h,k,l$

I-центр.

$$h+k+l=2n \quad \forall h,k,l$$

Базоцентрированная

$$C: h+k=2n \quad \forall h,k,l$$

$$B: h+l=2n \quad \forall h,k,l$$

$$A: k+l=2n \quad \forall h, k, l$$

R-центр. в гексагональной установке

$$-h+k+l=3n \quad \forall h,k,l$$

2.2 И еще раз о преобразованиях

Пусть базисные вектора преобразуются матрицей А

$$\mathbf{a}' = \mathbf{A}\mathbf{a}$$

$$\mathbf{b'} = \mathbf{Ab}$$

$$\mathbf{c}' = \mathbf{A}\mathbf{c}$$

Для каждого базисного вектора обратной решетки (например, а*):

$$\mathbf{a'}^* \cdot \mathbf{a'} = 1, \mathbf{a'}^* \cdot \mathbf{b'} = \mathbf{a'}^* \cdot \mathbf{c'} = 0$$

$$\mathbf{a'}^* \cdot \mathbf{a'} = \mathbf{A}^T \mathbf{a'}^* \cdot \mathbf{a} \to \mathbf{A}^T \mathbf{a'}^* = \mathbf{a}^* \to \mathbf{a'}^* = (\mathbf{A}^T)^{-1} \mathbf{a}^*$$

Тогда для преобразования координат:

$$(h,k,l)' = \mathbf{A}(h,k,l)$$

Пусть открытым элементом симметрии является плоскость $a_{\rm v}$

$$(x, y, z) \rightarrow \left(x + \frac{1}{2}a, -y, z\right)$$

Тогда в выражении для F_{hkl} можно выделить следующие пары:

$$F_{hkl} = \sum_{j} g_{j} t_{j} \left(e^{2\pi i (hx + ky + lz)} + e^{2\pi i (h(x + 0.5) - ky + lz)} \right) F_{atom}^{j} =$$

$$= \sum_{j} g_{j} t_{j} e^{2\pi i (hx + ky + lz)} \left(1 + e^{2\pi i (0.5h - 2ky)} \right) F_{atom}^{j}$$

Тогда при k=0 h должно быть четным (в противном случае $F_{h0l}=0$). Условия погасания (точнее, появления \odot): (h0l), h=2n

Для оси 2_1 , направленной вдоль оси x: Условия погасания (опять же, появления): (h00), h = 2n

Набор погасаний ↔ центрировки + открытые элементы симметрии

Каков набор операций пространственной симметрии $F(\mathbf{q})$ для известного набора операций симметрии $ho(\mathbf{r})$?

Вид пространственной симметрии	$ ho(\mathbf{r})$	$F(\mathbf{q})$
Трансляционная симметрия	$\rho(\mathbf{r} + \mathbf{t}_{mnp}) = \rho(\mathbf{r})$ $\forall \mathbf{t}_{mnp} = m\mathbf{a} + n\mathbf{b} + p\mathbf{c}$	$F(\mathbf{q}) = \sum_{h,k,l} F_{hkl} \delta(\mathbf{q} - \mathbf{q}_{hkl})$
20000 171 10 20000171 1 0140400701414	$\rho(\mathbf{Ar}) = \rho(\mathbf{r})$	$F(\mathbf{A}^T\mathbf{q}) = F(\mathbf{q})$
Закрытые элементы симметрии Открытые элементы симметрии	$\rho(\mathbf{Ar} + \mathbf{t}) = \rho(\mathbf{r})$	Погасания

2.2 Систематические погасания

Обозначение элемента	Ориентация	Зона	Условия
Центрировки			
A	_	hkl	k+l=2n
В	_	hkl	h+l=2n
C	_	hkl	h+k=2n
			lo + lz — 2 zo
			$ \begin{vmatrix} h+k=2n\\k+l=2n \end{vmatrix} $
F	_	hkl	h+l=2n
I	_	hkl	h+k+l=2n
R (в гексагональной			
установке)	_	hkl	-h+k+l=3n

2.2 Систематические погасания

Обозначение элемента	Ориентация	Зона	Условия
Плоскости скользящего отражения			
	(010)	hOl	h=2n
	(001)	hk0	h=2n
a	(110)	hhl	h=2n
	(100)	Okl	k=2n
b	(001)	hk0	k=2n
	(100)	Okl	l=2n
	(010)	hOl	l=2n
	(110)	hhl	l=2n
c	(1-10)	h-hl	l=2n
	(100)	0kl	k+l=4n (k,l=2n)
	(010)	hOl	h+l=4n (h,l=2n)
	(001)	hk0	h+k=4n (h,l=2n)
d	(110)	hhl	$2h+l=4n \ (l=2n)$
	(100)	Okl	k+l=2n
	(010)	hOl	h+l=2n
	(001)	hk0	h+k=2n
n	(110)	hhl	l=2n

2.2 Систематические погасания

Обозначение элемента	Ориентация	Зона	Условия
Винтовые оси			
	[100]	h00	h=2n
2 ₁ ,4 ₂	[010]	0k0	k=2n
2 ₁ ,4 ₂ ,6 ₃	[001]	001	l=2n
	[100]	h00	h=4n
	[010]	0k0	k=4n
4 ₁ ,4 ₃	[001]	001	l=4n
3 ₁ ,3 ₂ ,6 ₂ ,6 ₄	[001]	001	l=3n
6 ₁ ,6 ₅	[001]	001	l=6n

2.3 Выбор пространственной группы

1. Определение сингонии кристалла из результатов индицирования

- 1.1 Может приводить к ошибкам (близкие по модулям вектора и т.п.)
- 1.2 Всегда руководствуйтесь правилами выбора ячейки: ячейка с максимальной симметрией наименьшего объема.

2. Анализ систематических погасаний рефлексов

- 2.1 Центрировки
- 2.2 Открытые элементы симметрии (если есть)
- 3. Выбор *наиболее высокосимметричной группы*, удовлятворяющей условиям 1 и 2.
- 4. Дальнейшее уточнение данных о симметрии кристалла в ходе решения/уточнения структуры

Summary

- 1. Симметрия кристалла в прямом пространстве отражается на симметрии обратного пространства
- 2. Интенсивности (не комплексные амплитуды!) рефлексов (hkl) и (-h,-k,-l) при отсутствии аномального рассеяния равны закон Фриделя.
- 3. Симметрия обратного пространства (узлы обратной решетки + $|F|^2$) характеризуется Лауэ-классом (точечная группа кристалла + центр инверсии).
- 4. В зависимости от Лауэ-класса и точечной группы дифракционного вектора q=hkl фактор повторяемости p_{hkl} .
- 5. Центрировки и открытые элементы симметрии = систематические погасания.
- 6. Определение систематических погасаний этап в определении пространственной группы.