

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Семинар №1.

Темы

- 1. Выбор длины волны: каналы рассеяния
- 2. Обратная решетка и закон Брегга
- 3. Структурная амплитуда
- 4. Систематические погасания

Выбор длины волны

Задача №0:

Мы собираемся исследовать Со-содержащий органический комплекс (типа фталоцианина, моноклинка с параметрами 15, 5, 20Å). Какую длину волны лучше всего использовать? Для справки: Со $K_{\rm edge} = 1.608$ Å.

Что бы Вы посоветовали, если бы в комплексе дополнительно присутствовала медь (Си $K_{\rm edge}=1.381$ Å)? Железо (Fe $K_{\rm edge}=1.744$ Å)? Марганец (Мп $K_{\rm edge}=1.896$ Å)?

```
\lambda K_{\alpha 1} для Ag 0.5594 Å Mo 0.7093 Å Cu 1.5406 Å Co 1.7890 Å Fe 1.9360 Å Cr 2.2897 Å
```

Выбор длины волны

Кстати, линейный коэффициент поглощения для фталоцианина кобальта:

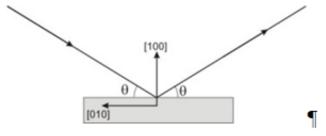
```
Ag 0.789 mm-1

Mo 1.506 mm-1

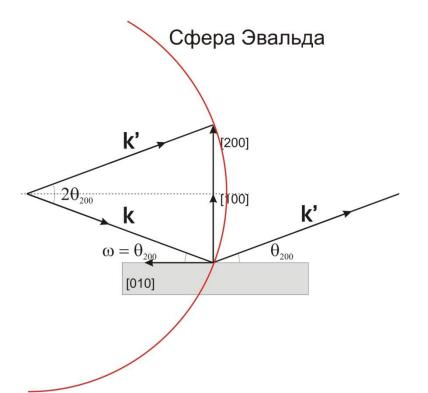
Cu 11.808 mm<sup>-1</sup>

Co 3.355 mm<sup>-1</sup>

Fe 4.202 mm-1


Cr 6.792 mm-1
```

А если там на позиции металла 50% Mn:


```
Cu 10.611 mm<sup>-1</sup>
Co 8.570 mm<sup>-1</sup>
Fe 3.839 mm<sup>-1</sup>
Cr 6.211 mm<sup>-1</sup>
```

Задача №1:

Монокристалл \cdot ZnS \cdot (F-43m, \cdot a°=°5.4060°Å) \cdot вырезан \cdot вдоль \cdot плоскости \cdot (100). Вы \cdot поместили \cdot этот \cdot монокристалл \cdot на \cdot держатель \cdot порошкового \cdot дифрактометра \cdot (Co° $K\alpha_1$, 1°=°1.7890°Å) \cdot и \cdot регистрируете \cdot дифрактограмму \cdot в \cdot диапазоне \cdot углов \cdot 2 θ =°10°-°140°, \cdot геометрия \cdot «на \cdot отражение», \cdot плоскость \cdot монокристалла \cdot параллельна \cdot плоскости \cdot держателя. Какие \cdot рефлексы \cdot Вы \cdot увидите \cdot 2 \cdot 14 \cdot 16 каких \cdot 3 углах? \cdot 16 Как \cdot 3 зарегистрировать \cdot 4 рефлекс \cdot 6 (111) \cdot 5 этого \cdot 6 монокристалла \cdot 7 Для \cdot 6 ответа \cdot 6 на \cdot 7 последний \cdot 8 вопрос \cdot 18 ответа \cdot 8 каких \cdot 9 глах? \cdot 8 каких \cdot 9 глах ответа \cdot 9 ксперимента, вычислите, если \cdot 10 получится, необходимые \cdot 9 углы \cdot 9

Построение Эвальда

При симметричной дифракции ($\omega = \theta$) вектор рассеяния $\mathbf{k'}$ - \mathbf{k} направлен по нормали к поверхности образца

Модуль вектора рассеяния

$$|\mathbf{q}| = |\mathbf{k'} - \mathbf{k}| = 2 \times \sin \theta \times |\mathbf{k}| = \frac{2 \sin \theta}{\lambda}$$

Чтобы увидеть рефлекс (Bragg's law = закон Брэгга)

$$\mathbf{q} = \mathbf{q}_{hkl}$$

Переформулируем условие равенства векторов

$$\mathbf{q} = \mathbf{q}_{hkl} \Leftrightarrow \begin{cases} |\mathbf{q}| = |\mathbf{q}_{hkl}| \\ \mathbf{q} \uparrow \uparrow \mathbf{q}_{hkl} \end{cases}$$

Из второго условия – мы можем увидеть только рефлексы, вектора которых нормальны к поверхности кристалла

Зона [100]

Мы можем увидеть рефлексы зоны [100] – это нормаль к поверхности

$$\mathbf{q}_{h00} = h\mathbf{a}^* + 0\mathbf{b}^* + 0\mathbf{c}^*$$

Напоминаю, [hkl] – вектора, (hkl) – плоскости. Кто забыл

$$[hkl] \perp (hkl)$$

Это кубик. А значит:

$$\mathbf{a}^* = \left(\frac{1}{a}, 0, 0\right)$$

Отсюда получаем:

$$\mathbf{q}_{h00} = (\frac{h}{a}, 0, 0) \Rightarrow |\mathbf{q}_{h00}| = \sqrt{\frac{h^2}{a^2} + 0 + 0} = \frac{h}{a}$$

И, с учетом предыдущих равенств

$$\left|\mathbf{q}_{h00}\right| = \frac{h}{a} = \left|\mathbf{q}\right| = \frac{2\sin\theta_{h00}}{\lambda}$$

Положения рефлексов

$$|\mathbf{q}_{h00}| = \frac{h}{a} = |\mathbf{q}| = \frac{2\sin\theta_{h00}}{\lambda} \Rightarrow 2\theta_{h00} = 2\arcsin\left(h\frac{\lambda}{2a}\right)$$

hkl	$2\theta_{hkl}$		Bce
100	19.048		•
200	38.650		
300	59.523		
400	82.883		
F00	111 610		
300	111.043		
600	166.227	>	140°
700	Не увидим		

Все ли рефлексы будут видны? Как с погасаниями?

Reflection conditions

h, k, l permutable

General:

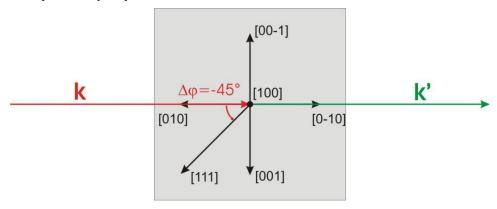
hkl: h+k, h+l, k+l=2n

0kl : k, l = 2n

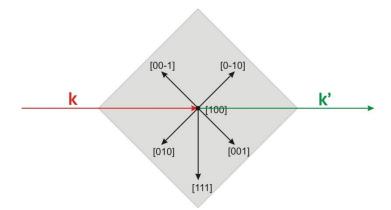
hhl: h+l=2n

h00: h = 2n

Special: no extra conditions

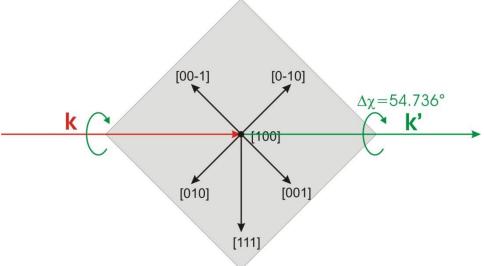

И проверяем условия по углам (10 - 140°). Готово!

Что насчет рефлекса (111)?

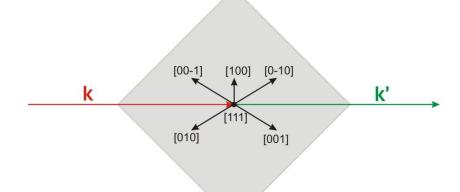

Чтобы его зарегистрировать, надо повернуть кристалл таким образом, чтобы:

$$\mathbf{q} \uparrow \uparrow \mathbf{q}_{111}$$

Посмотрим на систему сверху:



Повернули. Теперь у нас [111] располагается вот так:



А дальше?

Теперь повернем по перпендикулярной оси χ (это система координат дифрактометра!)

И получим вектор [111], коллинеарный вектору рассеяния

А дальше?

И рассчитаем дифракционный угол:

$$\mathbf{q}_{111} = \mathbf{a}^* + \mathbf{b}^* + \mathbf{c}^*$$

Это все еще кубик©

$$\mathbf{a}^* = \left(\frac{1}{a},0,0\right)$$

$$\mathbf{b}^* = \left(0, \frac{1}{a}, 0\right)$$

$$\mathbf{c}^* = \left(0, 0, \frac{1}{a}\right)$$

$$\left|\mathbf{q}_{111}\right| = \sqrt{\frac{1}{a^2} + \frac{1}{a^2} + \frac{1}{a^2}} = \frac{\sqrt{3}}{a}$$

$$2\theta_{111} = 2\arcsin\left(\sqrt{3}\frac{\lambda}{2a}\right) = 33.308^{\circ}$$

2. Вам предложили заказать фольгу для изготовления <u>\(\beta\)</u>-фильтров. У <u>\(\text{Вашего}\) дифрактометра</u> трубка с хромовым анодом, поэтому Вы решили взять ванадиевую фольгу. Ваш руководитель настаивает, что рефлексы от $\mbox{Cr}\ Keta$ по интенсивности не должны превышать 0.5% от интенсивности рефлексов $\mbox{Cr}\ Klpha_{1+2}$. Массовые коэффициенты поглощения V для $\mbox{Cr}\ Keta$ равны 501.0 см²/г, для $\mbox{Cr}\ Klpha_{1+2}$ - 75.1 см²/г (для $\mbox{Cr}\ Klpha_1$ и $\mbox{Cr}\ Klpha_2$ коэффициенты можно считать одинаковыми), плотность ванадия равна 6.1 г/см³. Какой толщины фольга Вам необходима? Во сколько раз ослабнут рефлексы от $\mbox{Cr}\ Klpha_{1+2}$ при применении такого фильтра?

$$\mu = \mu_{m}\rho$$

$$I = I_{0} \exp(-\mu d)$$

$$I_{\beta}^{0} / I_{\alpha}^{0} = \frac{2}{15}$$

$$I_{\beta} / I_{\alpha} = I_{\beta}^{0} / I_{\alpha}^{0} \times \frac{\exp(-\mu_{m}^{\beta}\rho d)}{\exp(-\mu_{m}^{\alpha}\rho d)} = I_{\beta}^{0} / I_{\alpha}^{0} \times \exp(\mu_{m}^{\alpha} - \mu_{m}^{\beta})\rho d$$

$$0.005 \times \frac{15}{2} < \exp(\mu_{m}^{\alpha} - \mu_{m}^{\beta})\rho d$$

$$d > \frac{1}{\mu_{m}^{\alpha} - \mu_{m}^{\beta}} \rho \times \ln(0.005 \times \frac{15}{2})$$

3. Рассчитайте интенсивности рефлексов (111) и (300) на дифрактограмме поликристаллического образца Au (a=4.079 Å, S.G. Fm-3m, единственный симметрически неэквивалентный атом меди имеет координаты (0,0,0), тепловыми колебаниями пренебрегайте, заселенность позиции единичная). Для упрощения расчетов считайте, что рассеивающий фактор железа $F_{Cu} = Z_{Cu} e^{-\frac{\sin\theta}{\lambda}}$, показатель экспоненты в Å-1, аномальным рассеянием можно пренебречь. Съемка проводится на излучении Cu $K\alpha_1$, $\lambda=1.5406$ Å, геометрия «на отражение», монохроматор отсутствует. Считайте единичными интенсивность первичного пучка, абсорбционный фактор, текстурный фактор и фактор экстинкции.

5. Для регистрации дифрактограмм высокого разрешения иногда применяют четверные монохроматоры (т.н. монохроматоры Бартельса). Схема эксперимента с монохроматором представлена ниже. Предложите формулу для расчета Р-фактора, рассчитайте значение Р-фактора для кремниевого (111) монохроматора ($d_{111} = 3.1355 \text{ Å}$) и длины волны Со $K\alpha_1$ (1.789 Å) и дифракционного угла $2\theta = 25^{\circ}$.

