

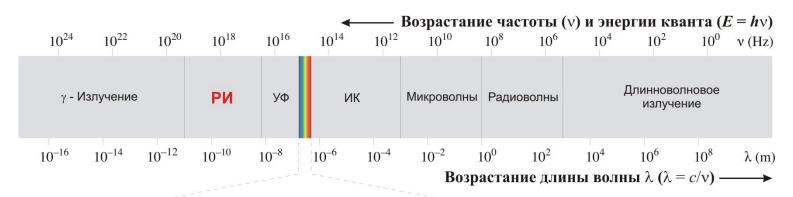
Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

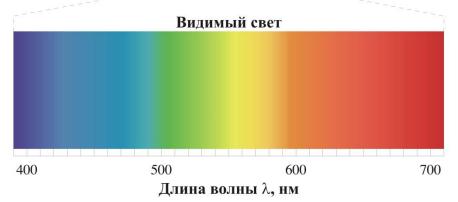
Рентгеновское излучение.
Источники рентгеновского излучения.
Взаимодействие рентгеновского излучения с веществом.

Содержание

1. Рентгеновское излучение (РИ)

2. Источники РИ. Спектральный состав РИ.


- 2.1 Характеристическое рентгеновское излучение. Закон Мозли.
- 2.2 Рентгеновские трубки. Спектр рентгеновской трубки.
- 2.3 Синхротронные источники. Изотопные источники.


3. Взаимодействие РИ с веществом

- 3.1 Упругое рассеяние.
- 3.2 Комптоновское рассеяние.
- 3.3 Фотоэффект. Рентгеновская флуоресценция.
- 3.4 Линейный коэффициент поглощения. Уравнения Гамильтона Дарвина.
- 3.5 Дифракция рентгеновского излучения.

1. Рентгеновское излучение (РИ)

РИ (X-Rays, Röntgenstrahlung) — электромагнитное излучение с $\lambda = 5 \times 10^{-2} \div 10^{2}$ Å. (E = 250 кэВ — 100 эВ).

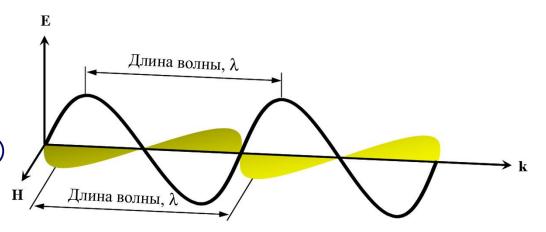
кстати:
$$\lambda[A] = \frac{12.4}{E[\kappa \ni B]}$$

В.К.Рентген

1-я Нобелевская премия по физике (1901)

1. Рентгеновское излучение (РИ)

Как и всякое ЭМ излучение, РИ характеризуется:


1. Волновым вектором k

$$|\mathbf{k}| = 2\pi/\lambda = \omega/c$$

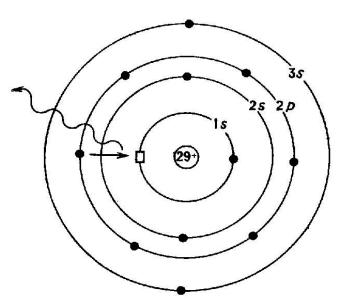
- 2. Амплитудой A (а точнее, амплитудами E и H)
- 3. Поляризацией

В комплексном виде: $\hat{a}(t) = A \exp i(\omega t + \varphi) = \hat{A} \exp i\omega t$

$$I \sim \left| \hat{A} \right|^2$$

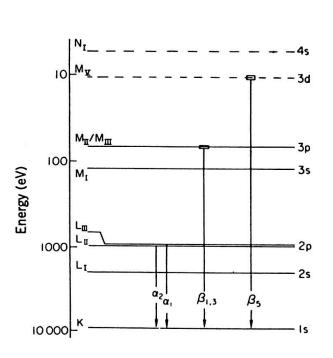
Кстати:

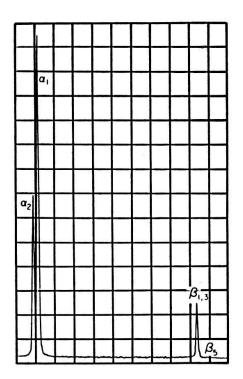
В теории дифракции РИ часто считают $|k|=1/\lambda$


Это все для когерентного монохроматического излучения 🗈.

- 1. Когерентные источники РИ (рентгеновский лазер) ⊚....
- 2. Обычно РИ имеет протяженный спектр, некогерентно.
- 3. Длина когерентности РИ ~ 1 мкм.

Энергия связи электронов на низшей (K) оболочке атомов:


H: 13.6 эВ (= Ry) → Be: 115.6 эВ → <u>Cu: 8.983 кэВ</u> → Pu: 121.768 кэВ


Характеристическое РИ:

$$K\alpha_1 = 2p_{3/2} \rightarrow 1s$$

 $K\beta_1 = 3p_{3/2} \rightarrow 1s$
 $L\alpha_1 = 3d_{3/2} \rightarrow 2p_{1/2}$

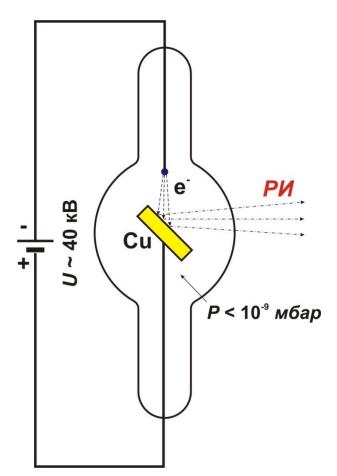
Закон Мозли (для K – серии)

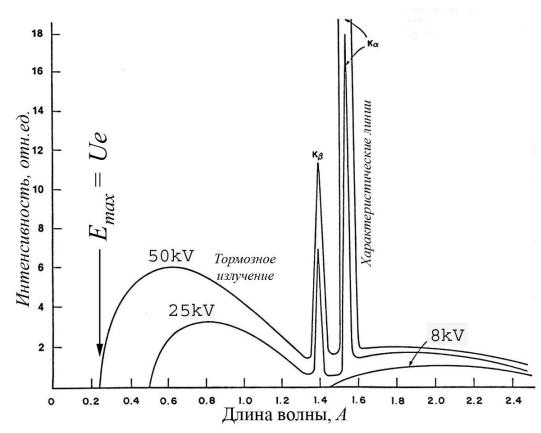
$$E(Z) = Ry \times (Z-1)^2 \times (1-\frac{1}{n^2}), n = 2,3...$$

Обозначения линий характеристического РИ

К-серия		L-серия		М-серия		
Переход	Индекс линин	Переход	Индекс линия	Переход	Индекс линии	
K—L _{III} K—M _{II} K—M _{III} K—M _{III} K—M _{IV} K—M _{IV} K—M _{IV,V} K—N _{II} K—N _{III} K—N _{III} K—N _{IV}	α ₂ α ₁ β ₃ β ₁ β ₅ β ₂ β ₂ β ₃ β ₄ β ₄	$\begin{array}{c} L_{\rm I} - M_{\rm II} \\ L_{\rm I} - M_{\rm IV} \\ L_{\rm I} - M_{\rm IV} \\ L_{\rm I} - M_{\rm IV} \\ L_{\rm I} - N_{\rm II} \\ L_{\rm II} - M_{\rm IV} \\ L_{\rm II} - M_{\rm IV} \\ L_{\rm II} - M_{\rm IV} \\ L_{\rm II} - N_{\rm IV} \\ L_{\rm II} - M_{\rm IV} \\ L_{\rm III} - N_{\rm IV} \\ L_{\rm III} - N$	β ₄ β ₃ β ₁₀ β ₉ γ ₂ γ ₃ γ ₄ γ ₄ γ ₁₃ η γ ₅ γ ₆ β ₁₅ β ₇ β ₇ β ₇ β ₇ β ₇ β ₇	M _{III} —N _V M _{IV} —N _{III} M _{IV} — —N _{VI,V} II M _{IV} — —OII, III M _V —N _{II} M _V —N _{II} M _V —N _{VI} M _V —N _{VI} M _V —N _{VI}	γ δ ξ ξ ξ α α α	

Уровень электрона и атоме	. 1s-	2s L ₁	$\frac{2p_{1/2}}{L_{II}}$	$\frac{2p_{s}}{L_{III}}$	3s M _I
Уровень электрона и атоме		$3p_{s_I}$	3d _* ,	3d,	ит.д.
Терм уровня	, -	8 -44		4.40	

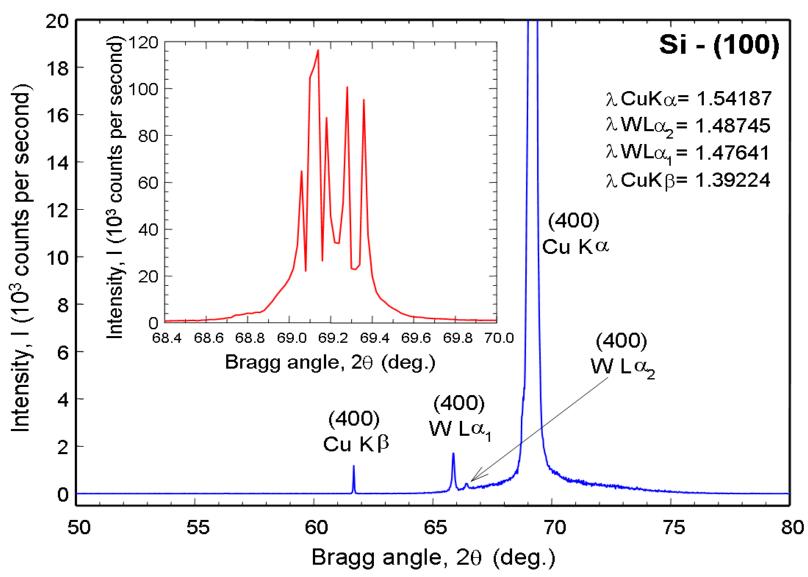

Интенсивности линий внутри каждой серии связаны между собой определенным образом:


Например, для <u>Си *K*-серии</u>:

$$I\alpha_1:I\alpha_2:I\beta_1\approx 10:5:2$$

Cu K	$\lambda \mathit{K}_{lpha 1}$ для			
$\lambda_{\alpha 1} = 1.5406 \text{ Å}$	Ag	0.5594 Å		
$\lambda_{a2} = 1.5444 \text{ Å}$	Мо	0.7093 Å		
$\lambda_{\rm B1} = 1.3930 \text{ Å}$	Co	1.7890 Å		
$\lambda_{\alpha} = 1.5418 \text{ Å}$	Fe	1.9360 Å		
λ_{α} – 1.3410 A	Cr	2.2897 Å		

Рентгеновская трубка (Си - анод)


Характеристическое излучение:

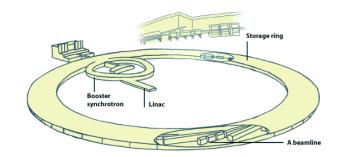
$$I \sim i \times (U - U_o)^n, 1.6 < n < 2 U_0$$
(Cu) ~ 9 кВ

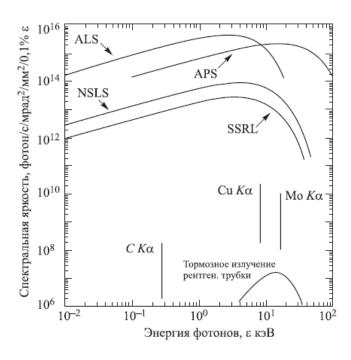
Тормозное излучение (белый спектр):

 $I hicksim i imes U^2 Z, Z$ — атомный номер материала анода

Многокомпонентный анод (Си с примесью W):

Синхротронные источники:

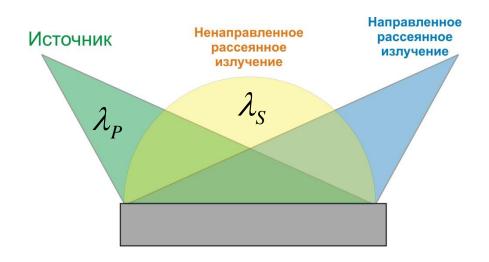

- Сихротронное излучение излучение релятивистских электронов, движущихся с ускорением.
- Интенсивность в 10^6 $10^{20}(!)$ раз выше, чем у рентгеновской трубки.
- Протяженный гладкий спектр.
- Поляризованное излучение.

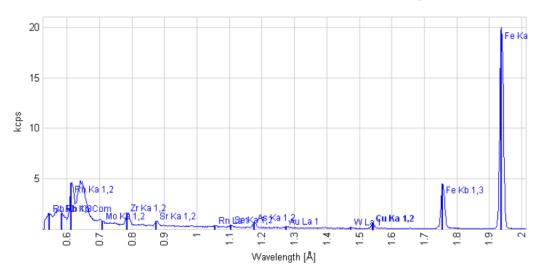

Изотопные источники:

Распад К – захватом:

⁵⁵**Fe** + **e**⁻
$$\rightarrow$$
 ⁵⁵Mn + $\nu_{\rm e}$ ($\tau_{1/2}$ = 2.6 года)

- Практически чистая K серия (без тормозного излучения).
- Таких изотопов сравнительно немного, например ²⁶Al (Mg K), ⁵⁹Ni (Co K) и т.п.




(по Г.В.Фетисов, 2007)

3. Взаимодействие РИ с веществом.

Взаимодействие РИ с веществом

Типичный спектр рассеянного излучения

Упругое рассеяние

• Релеевское рассеяние

$$\lambda_P = \lambda_S$$

Неупругое рассеяние

• **Комптоновское** рассеяние – взаимодействие со слабо связанным электроном

$$\lambda_{S} = \lambda_{P} + \frac{h}{m_{e}c} (1 - \cos \alpha)$$

• Фотоэффект и последующая рентгеновская флуоресценция

$$\lambda_P > \lambda_S = \lambda_{K,L,M...}^X$$

Упругое когерентное рассеяние

• Дифракция

$$\lambda_P = \lambda_S$$

для когерентного рассеяния первичного пучка

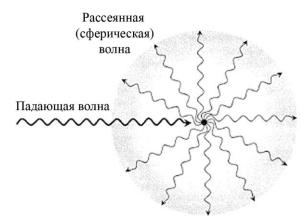
3.1 Упругое (релеевское/томсоновское) рассеяние

Томсоновское рассеяние – упругое рассеяние на заряженных частицах.

Рассеяние происходит упруго - с сохранение длины волны: $\lambda_P = \lambda_{\varsigma}$

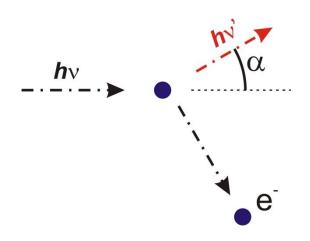
$$\lambda_P = \lambda_S$$

Полное сечение рассеяния:
$$\sigma = \frac{8\pi}{3} \left(\frac{q^2}{4\pi \varepsilon_0 mc^2} \right)^2$$
 Очевидно, что $\sigma_N << \sigma_p << \sigma_e$ рассеяние происходит, в основном, на электронах


Интенсивность рассеянного излучения (нет зависимости от λ !):

$$\frac{d\varepsilon}{d\Omega} = I_0 n \left(\frac{q^2}{4\pi\varepsilon_0 mc^2} \right)^2 \frac{1 + \cos^2 2\theta}{2}$$

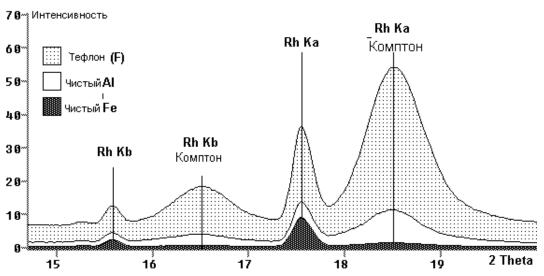
Рассеянное излучение - сферическая волна.


$$I \sim \frac{1}{r^2}$$

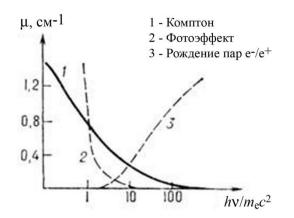
Рассеянное излучение поляризовано (параллельно ускорению частицы).

3.2 Комптоновское рассеяние

Соударение кванта РИ и слабо связанного (!) электрона



Часть энергии кванта $h\nu$ передается электрону:


$$\lambda' = \lambda + \frac{h}{m_e c} (1 - \cos \alpha)$$

для свободного покоящегося электрона

Соотношение $I^{ m Relay}/I^{ m Compton}$ зависит от типа вещества

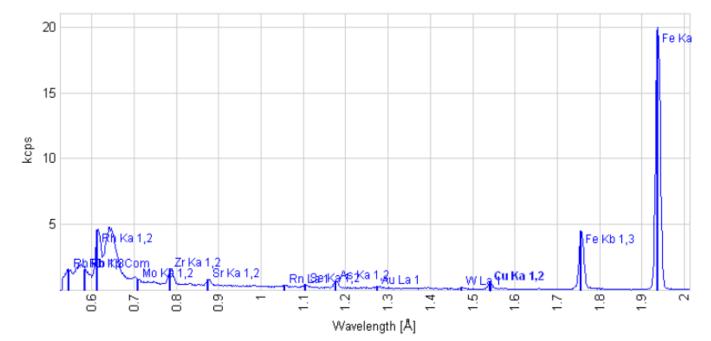
Широкий комптоновский пик ↔ распределение импульсов связанных электронов

Сечение рассеяния комптоновского излучения имеет сложную зависимость от энергии кванта

3.3 Фотоэффект. Рентгеновская флуоресценция.

Взаимодействие электрона с K-оболочки с квантом РИ.

+
$$e^{-}$$
 ($E = hv - \varepsilon_{1s}$)

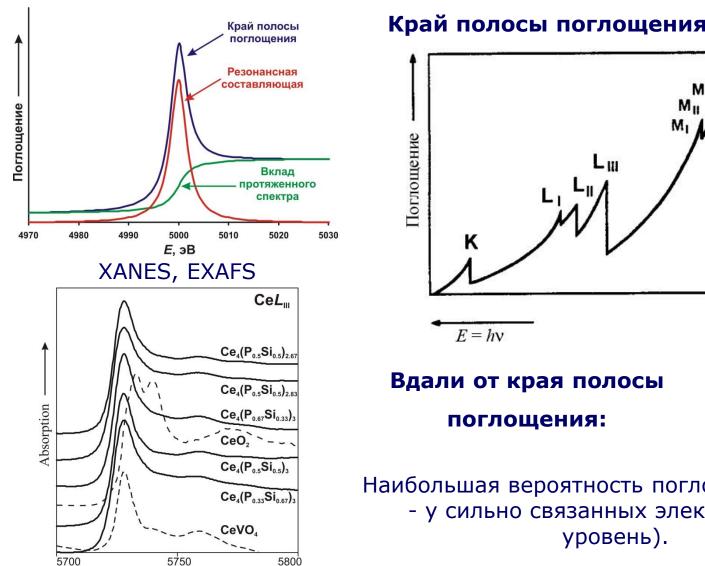

$$L = \begin{cases} 2p & \text{th} & \text{th} \\ 2s & \text{th} \end{cases}$$

$$L = \begin{cases} 2p & \text{th} & \text{th} \\ 2s & \text{th} \end{cases}$$

$$L = \begin{cases} 2p & \text{th} & \text{th} \\ 2s & \text{th} \end{cases}$$

$$K = \begin{cases} 1s & \text{th} \end{cases}$$

Спектр рассеянного излучения



Фотоэффект + рентгеновская флуоресценция - олин из самых

- один из самых вероятных процессов

3.3 Фотоэффект. Рентгеновская флуоресценция.

Какова зависимость вероятности фотоэффекта от энергии кванта?

E. eV

Край полосы поглощения ($h_V = E_{K,L,M...}$)

 $\mu \sim \lambda^3 Z^3$

Наибольшая вероятность поглощения кванта - у сильно связанных электронов (K-

Закон Бугера-Ламберта-Бэра:

$$I(x) = I_0 e^{-\mu x}$$

Линейный коэффициент поглощения μ - сумма всех видов взаимодействий

Очевидно, что $\mu = \mu (\lambda$, материал). $[\mu] = \text{мм}^{-1} = 10 \text{ см}^{-1} = (1000 \text{ м}^{-1})$

Для более детального описания взаимодействия РИ с веществом применяют т.н. уравнения Гамильтона – Дарвина:

$$\frac{\partial I_P}{\partial \mathbf{t}_P} = \mu I_P + \sigma_2 I_S$$

$$\frac{\partial I_S}{\partial \mathbf{t}_S} = \mu I_S + \sigma_1 I_P$$

 I_{P} – интенсивность первичного пучка с направлением распространения t_p , I_{ς} – интенсивность вторичного пучка с направлением распространения \boldsymbol{t}_{S} , σ – сечение рассеяния для векторов t_p , t_s .

$$\frac{\partial I_P}{\partial \mathbf{t}_P} = \mu I_P$$
 $\frac{\partial I_S}{\partial \mathbf{t}_S} = \mu I_S + \sigma I_P$
- пренебрежение т.н. «экстинкцией»

Эти уравнения понадобятся нам при расчете коэффициентов абсорбции, количественном РФА, исследовании тонких пленок...

Summary

- 1. Рентгеновское излучение (РИ) коротковолновое (0.05 100 Å) ЭМ излучение.
- 2. РИ возникает при переходах во внутренних оболочках атомов (характеристическое РИ)
- 3. Источники РИ: рентгеновская трубка, синхротрон, изотопы...
- 4. Взаимодействие с веществом РИ комплексное: упругое и неупругое рассеяние, фотоэффект...
- 5. Распространение РИ в пробе уравнения Гамильтона-Дарвина