

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Основы кристаллографии. Симметрия кристаллов.

Параметры курса 2024

- 1. Часть по PXRD: ~28-30 академических часов лекций + 2-4 академических часов семинаров + 6 академических часов практикума.
- 2. Часть по ЕМ (Путляев В.И.): ~ 18 часов.
- 3. Часть по PXRD включает в себя две КР (лекционные начало октября и середина ноября).
- 4. Отчетность по курсу зачет (при выполненном практикуме, естественно).
- 5. Рейтинг = KP+практикум \rightarrow автомат
- 6. Практикум: профильный анализ + индицирование + +решение+уточнение кристаллической структуры.
- 7. Понедельник: 1-я пара + Среда: 1-я пара

Ресурсы курса 2024

- 1. https://xraysonweb.ru лекции + организационная информация + дополнительные материалы + ссылки
- 2. pavel.chizhov@gmail.com Ваш лектор ©

Литература

- 1. V.K. Pecharsky & P.Y. Zavalij "Fundamentals of Powder Diffraction and Structural Characterization of Materials"
- 2. Л.М. Ковба, В.К. Трунов «Рентгенофазовый анализ»
- 3. П.С.Чижов, Э.Е.Левин, А.С.Митяев, А.А.Тимофеев. Приборы и методы рентгеновской и электронной дифракции.
- 4. "The Rietveld method" (Edited by R.A. Young)
- 5. G.E. Bacon "Neutron diffraction"
- 6. "Structure Determination from Powder Diffraction Data" (Edited by W.I.F. David *et al.*)

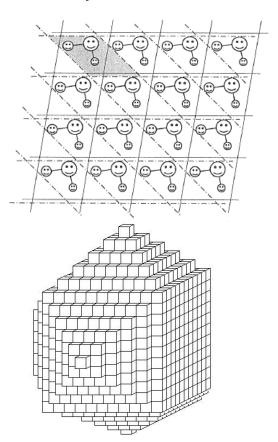
Содержание

1. Симметрия кристаллов

- 1.1 Трансляционная симметрия. Кристаллическая решетка.
- 1.2 Допустимые операции симметрии для 3D кристаллов.
- 1.3 Решетки Браве. Понятие о центрировках.
- 1.4 Пространственная группа.

2. Структура кристалла.

- 2.1 Основная информация о структуре кристалла.
- 2.2 CIF-файл.
- 2.3 Структурные базы данных.


1.1 Трансляционная симметрия.

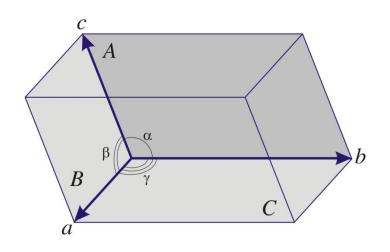
Кристалл – атомная система, характеризующаяся:

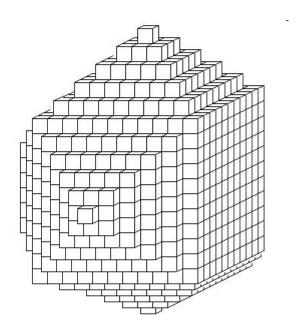
- 🗪 1) Дальним порядком
 - 2) Периодичностью (обычно 3-х мерной).

Периодичность = *трансляционная симметрия*

Трансляция (3D):

$$\mathbf{r}' = T_{nmp}(\mathbf{r}) = \mathbf{r} + n\mathbf{a} + m\mathbf{b} + p\mathbf{c}, \quad n, m, p \in \mathbb{Z}$$


Группа трансляций *Т*:

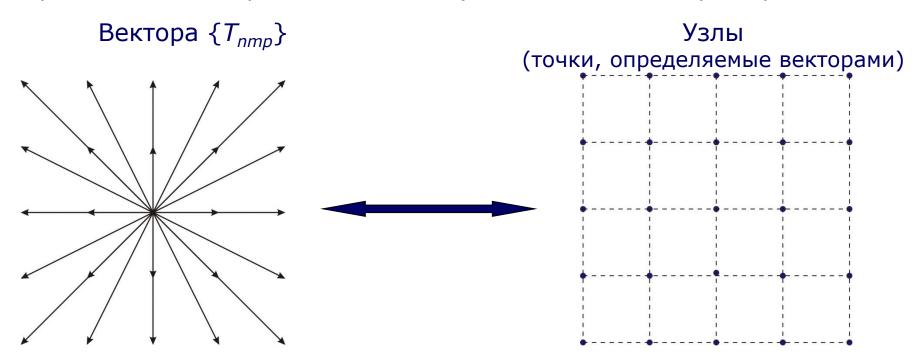

$$T = \{T_{nmp} : \forall n, m, p \in Z\}$$

Все свойства кристалла (например, электронная плотность $\rho(\mathbf{r})$) характеризуются периодичностью:

$$T_{nmp}(\rho(\mathbf{r})) = \rho(T_{nmp}(\mathbf{r})) = \rho(\mathbf{r})$$

1.1 Примитивная ячейка.

Примитивная ячейка – параллелепипед наименьшего (ненулевого) объема, построенный на трансляционных векторах.


Параметры элементарной ячейки:

длины сторон **a, b, c,** углы α , β , γ .

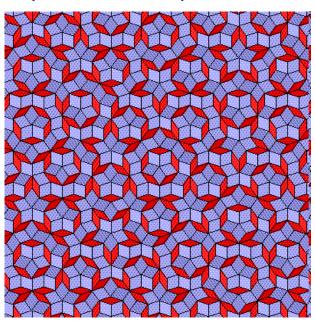
Трансляция примитивной ячейки – воспроизведение всего объема кристалла

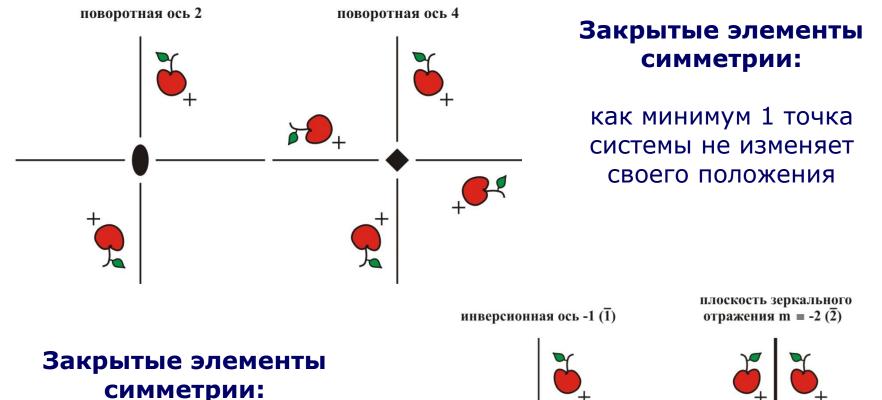
1.1 Кристаллическая решетка.

Кристаллическая решетка = совокупность всех векторов трансляций

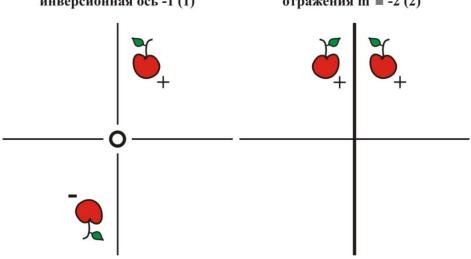
Очевидно, что T – группа симметрии кристаллической решетки.

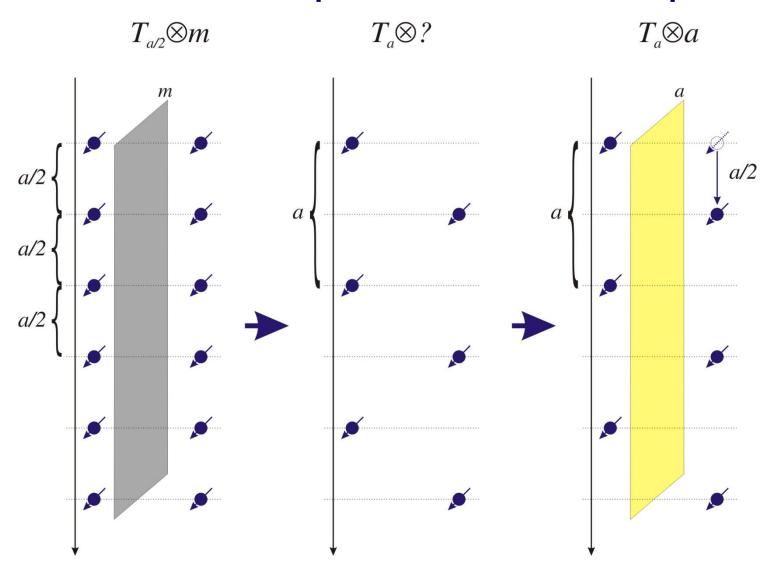

Какие дополнительные виды симметрии могут быть у кристаллической решетки?


<u>Как минимум, центр инверсии: r и -r одинаково являются векторами трансляций</u>

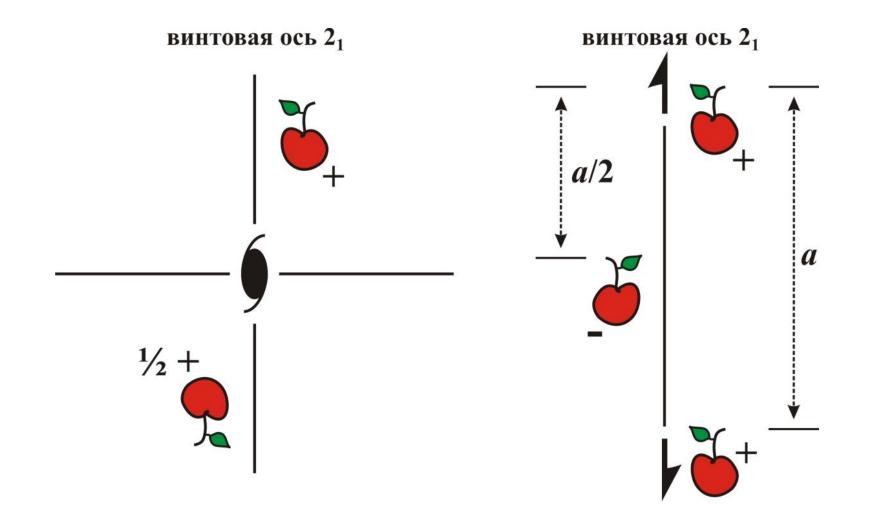

Трансляционной симметрии не противоречат:

- 1. Поворотные оси n (или C_n) 1,2,3,4 и 6 порядков.
- 2. Поворотно-инверсионные оси -n (или S_n) 1,2,3,4 и 6 порядков.
- 3. Плоскости симметрии (m = -2)
- 4. Центр инверсии (i = -1)
- $5. \, E = \text{ось } 1 = \text{единичный элемент}$

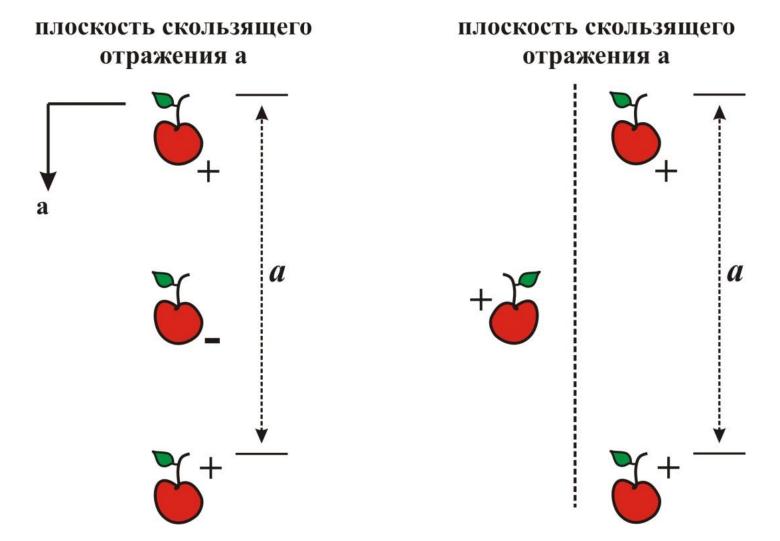

Оси 5-го порядка в кристаллах быть не может! Ось 5 =отсутствие трансляционной симметрии = квазикристалл



поворотные и поворотно-



Возникновение открытых элементов симметрии:


Открытые элементы симметрии – изменяют положение все точки.

Винтовые оси n_z (n – порядок оси, z/n - часть вектора трансляции)

Открытые элементы симметрии – изменяют положение все точки.

Плоскости скользящего отражения а,b,c,n,d

1.2 Математическое описание преобразований

Любое симметрическое преобразование в 3D задается парой матрица + вектор:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \mathbf{r}' = \mathbf{A}\mathbf{r} + \mathbf{t} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix}$$

Например, поворот на угол относительно оси c и трансляция на $\frac{1}{2}$ вектора c:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x_t \\ y_t \\ z_t \end{pmatrix}$$

Матрица **A** описывает воздействие закрытого элемента симметрии, **t** – трансляции. В сумме они описывают как закрытые, так и открытые элементы симметрии.

1.2 Математическое описание преобразований

Более удобно оперировать 4-х мерными матрицами преобразований:

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{t} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & x_t \\ a_{21} & a_{22} & a_{23} & y_t \\ a_{31} & a_{32} & a_{33} & z_t \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

В этом случае используется четырехмерный вектор координат, и:

$$\mathbf{r'} = \mathbf{Mr} = \begin{pmatrix} \mathbf{A} & \mathbf{t} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & x_t \\ a_{21} & a_{22} & a_{23} & y_t \\ a_{31} & a_{32} & a_{33} & z_t \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + a_{13}z + x_t \\ a_{21}x + a_{22}y + a_{23}z + y_t \\ a_{31}x + a_{32}y + a_{33}z + z_t \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{Ar} + \mathbf{t} \\ 1 \end{pmatrix}$$

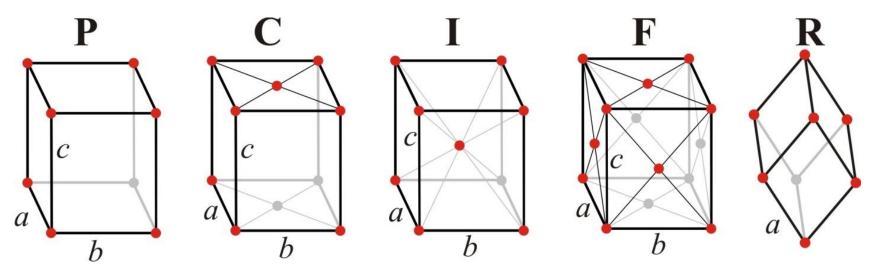
Четырехмерное представление используют также для описания модулированных/композитных структур.

1.2 Математическое описание преобразований

Стоит еще раз напомнить о применении операций симметрии:

$$M(\rho(\mathbf{r})) \rightarrow \rho(M(\mathbf{r})) = \rho(\mathbf{Ar} + \mathbf{t}) \equiv \rho(\mathbf{r})$$

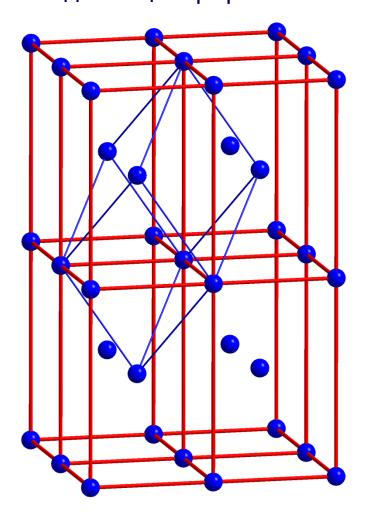
И указать, что все вращательные части операций симметрии также образуют группу – точечную группу (подгруппа относительно группы всех операций симметрии):

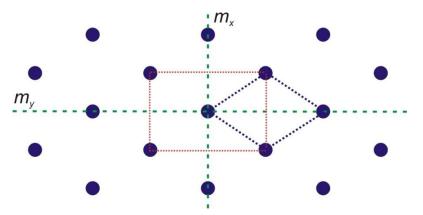

$$\{M\}\subset\{A\}$$

Это еще понадобится нам в дальнейшем.

1.3 Решетки Браве

Центрировки – возникают в том случае, когда симметрия примитивной ячейки ниже соответствующей точечной группы решетки (или ячейка просто неудобна в работе)

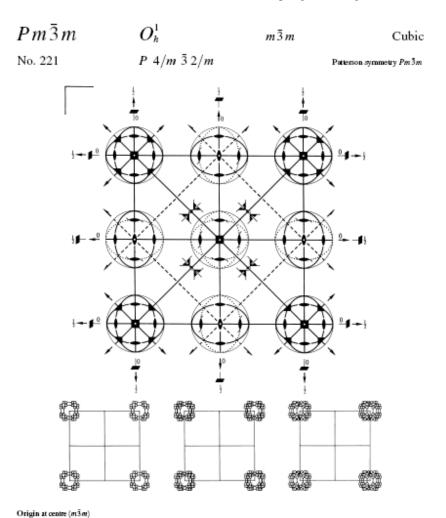

Ячейка увеличивается в **к** раз – до элементарной (кристаллографической, с наивысшей симметрией)


Наличие/ отсутствие тех или иных элементов симметрии позволяет выделить 7 решеток Браве (т.н. сингоний).

1.3 Решетки Браве

Примитивная ячейка для I-центрировки

Примитивная ячейка для *С*-центрировки


Важный момент – дополнительные трансляции в центрированных решетках ничем не отличаются от основных!

1.3 Решетки Браве

Сингония	Определяющие элементы симметрии	условия на параметры элементарных ячеек	Возможные центрировки	
триклинная	нет осей выше 1 порядка	отсутствуют	P	
моноклинная	существует и единственно направление, вдоль которого ось не выше 2 порядка	$\alpha = \gamma = 90^{\circ}$	P, C	
орторомбическая	существует более одного направления (min 3), вдоль которых оси не выше 2 порядка	$\alpha = \beta = \gamma = 90^{\circ}$	P, C, I, F	
тетрагональная	существует и единственно направление, вдоль которого ось 4 порядка	$a = b$, $\alpha = \beta = \gamma = 90^{\circ}$	P, I	
тригональная	существует и единственно направление, вдоль которого ось 3 порядка	$a = b, \ \alpha = \beta = 90^{\circ},$ $\gamma = 120^{\circ}$	P	
		$a = b = c, \ \alpha = \beta = \gamma$	R	
гексагональная	существует и единственно направление, вдоль которого ось 6 порядка	$a = b, \ \alpha = \beta = 90^{\circ},$ $\gamma = 120^{\circ}$	Р	
кубическая	существует более одного направления (min 4), вдоль которых оси 3 порядка	a = b = c, $\alpha = \beta = \gamma = 90^{\circ}$	P, I, F	

1.4 Пространственная группа

Совокупность всех операций симметрии = группа симметрии кристалла (пространственная группа)

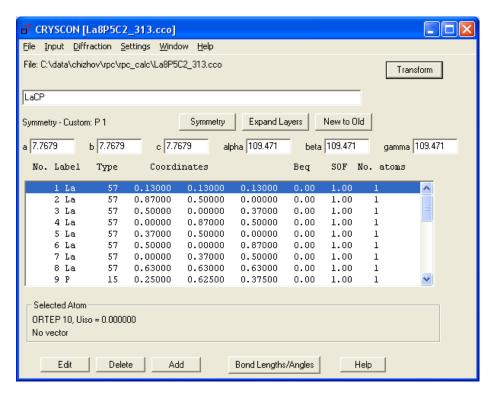
Всего существует 230 3D пространственных групп (т.н. федоровские группы)

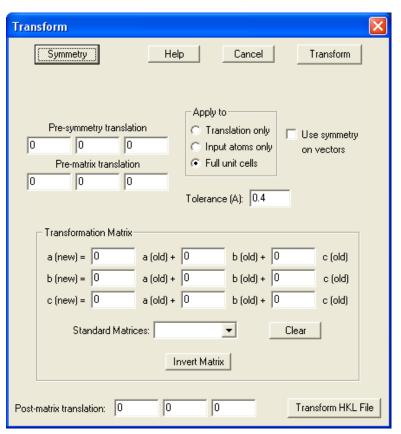
Е.С.Федоров

1.4 Пространственная группа

Характеристики пространственной группы:

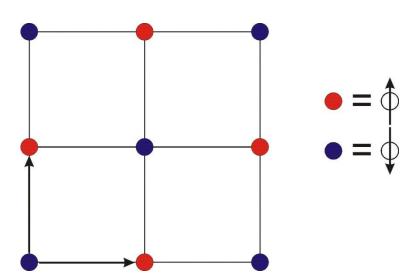
1. Сингония	48	n		(1) <i>x</i> , <i>y</i> , <i>z</i> (5) <i>z</i> , <i>x</i> , <i>y</i> (9) <i>y</i> , <i>z</i> , <i>x</i>	(2) \bar{x}, \bar{y}, z (6) z, \bar{x}, \bar{y} (10) \bar{y}, z, \bar{x}	(3) \bar{x} , y (7) \bar{z} , \bar{x} (11) y, \bar{z}	\bar{c}, y (\bar{z}, \bar{x} (1	4) <i>x</i> , <i>y</i> , <i>z</i> 8) <i>z</i> , <i>x</i> , <i>y</i> 2) <i>y</i> , <i>z</i> , <i>x</i>	
2. Центросимметричность			((13) y, x, \bar{z} (17) x, z, \bar{y} (21) z, y, \bar{x} (25) $\bar{x}, \bar{y}, \bar{z}$	(14) $\bar{y}, \bar{x}, \bar{z}$ (18) \bar{x}, z, y (22) z, \bar{y}, x (26) x, y, \bar{z}	(15) y, \bar{x} (19) \bar{x}, \bar{z} (23) \bar{z}, \bar{y} (27) x, \bar{y}	\bar{z}, \bar{y} (2)	6) \bar{y}, x, z 0) x, \bar{z}, y 4) $\bar{z}, \bar{y}, \bar{x}$ 8) \bar{x}, y, z	
3. Хиральность			((29) $\bar{z}, \bar{x}, \bar{y}$ (33) $\bar{y}, \bar{z}, \bar{x}$ (37) \bar{y}, \bar{x}, z (41) \bar{x}, \bar{z}, y	(30) \bar{z}, x, y (34) y, \bar{z}, x (38) y, x, z (42) x, \bar{z}, \bar{y}	(31) z,x (35) ȳ,z (39) ȳ,x (43) x,z	x, \overline{y} (3 x, x (3 x, \overline{z} (4	2) z, \bar{x}, y 6) y, z, \bar{x} 0) y, \bar{x}, \bar{z} 4) \bar{x}, z, \bar{y}	
4. Центрировка				$(45) \ \overline{z}, \overline{y}, x$	$(46) \ \bar{z}, y, \bar{x}$	(47) z,5		8) <i>z</i> , <i>y</i> , <i>x</i>	
5. Симморфная / несимморфная	24	m	m	x, x, z $\overline{z}, \overline{x}, x$ x, x, \overline{z} $\overline{x}, \overline{z}, \overline{x}$	$ar{x}, ar{x}, z$ $ar{z}, x, ar{x}$ $ar{x}, ar{x}, ar{z}$ $x, ar{z}, x$	$ar{x},x,ar{z}$ x,z,x $x,ar{x},z$ $z,x,ar{x}$	$\begin{array}{c} x, \bar{x}, \bar{z} \\ \bar{x}, z, \bar{x} \\ \bar{x}, x, z \\ z, \bar{x}, x \end{array}$	z, x, x $x, \overline{z}, \overline{x}$ x, z, \overline{x} \overline{z}, x, x	$z, \overline{x}, \overline{x}$ $\overline{x}, \overline{z}, x$ \overline{x}, z, x $\overline{z}, \overline{x}, \overline{x}$
6. Кратность общей позиции	24	l	<i>m</i>	$ \frac{1}{2}, y, z \bar{z}, \frac{1}{2}, y y, \frac{1}{2}, \bar{z} \frac{1}{2}, \bar{z}, \bar{y} $	$ \frac{1}{2}, \bar{y}, z \\ \bar{z}, \frac{1}{2}, \bar{y} \\ \bar{y}, \frac{1}{2}, \bar{z} \\ \frac{1}{2}, \bar{z}, y $	$\frac{1}{2}, y, \overline{z}$ $y, z, \frac{1}{2}$ $y, \frac{1}{2}, z$ $z, y, \frac{1}{2}$	$ \frac{1}{2}, \bar{y}, \bar{z} $ $ \bar{y}, z, \frac{1}{2} $ $ \bar{y}, \frac{1}{2}, z $ $ z, \bar{y}, \frac{1}{2} $	$z, \frac{1}{2}, y$ $y, \overline{z}, \frac{1}{2}$ $\frac{1}{2}, z, \overline{y}$ $\overline{z}, y, \frac{1}{2}$	$z, \frac{1}{2}, \bar{y}$ $\bar{y}, \bar{z}, \frac{1}{2}$ $\frac{1}{2}, z, y$ $\bar{z}, \bar{y}, \frac{1}{2}$
7. Частные позиции	24	k	<i>m</i>	$0, y, z$ $\bar{z}, 0, y$ $y, 0, \bar{z}$	$0, \overline{y}, z \\ \overline{z}, 0, \overline{y} \\ \overline{y}, 0, \overline{z}$	$0, y, \bar{z}$ y, z, 0 y, 0, z	$0, \overline{y}, \overline{z}$ $\overline{y}, z, 0$ $\overline{y}, 0, z$	z,0,y $y,\bar{z},0$ $0,z,\bar{y}$	$z,0,\bar{y}$ $\bar{y},\bar{z},0$ 0,z,y
8. Условия погасания	12	j	m.m2	$0, \bar{z}, \bar{y}$ $\frac{1}{2}, y, y$	$0, \overline{z}, y$ $\frac{1}{2}, \overline{y}, y$	$z, y, 0$ $\frac{1}{2}, y, \overline{y}$	$z, \bar{y}, 0$ $\frac{1}{2}, \bar{y}, \bar{y}$	$\overline{z}, y, 0$ $y, \frac{1}{2}, y$	$\bar{z}, \bar{y}, 0$ $y, \frac{1}{2}, \bar{y}$
9. Подгруппы / супергруппы	12	i	m.m2	$ \overline{y}, \frac{1}{2}, y $ $ 0, y, y $ $ \overline{y}, 0, y $	$ \bar{y}, \frac{1}{2}, \bar{y} \\ 0, \bar{y}, y \\ \bar{y}, 0, \bar{y} $	$y, y, \frac{1}{2}$ $0, y, \overline{y}$ $y, y, 0$	$\bar{y}, y, \frac{1}{2}$ $0, \bar{y}, \bar{y}$ $\bar{y}, y, 0$	$y, \overline{y}, \frac{1}{2}$ $y, 0, y$ $y, \overline{y}, 0$	$\bar{y}, \bar{y}, \frac{1}{2}$ $y, 0, \bar{y}$ $\bar{y}, \bar{y}, 0$
	12	h	m m 2	$x, \frac{1}{2}, 0$ $\frac{1}{2}, x, 0$	$\begin{array}{l} \bar{x},\frac{1}{2},0\\ \frac{1}{2},\bar{x},0 \end{array}$	$0, x, \frac{1}{2}$ $x, 0, \frac{1}{2}$	$\begin{array}{c} 0, \bar{x}, \frac{1}{2} \\ \bar{x}, 0, \frac{1}{2} \end{array}$	$\begin{array}{c} \frac{1}{2}, 0, x \\ 0, \frac{1}{2}, \bar{x} \end{array}$	$\frac{1}{2}, 0, \bar{x}$ $0, \frac{1}{2}, x$
Название пространственной	8	g	. 3 m	x, x, x x, x, \bar{x}	\bar{x}, \bar{x}, x $\bar{x}, \bar{x}, \bar{x}$	\bar{x}, x, \bar{x} x, \bar{x}, x	x, \bar{x}, \bar{x} \bar{x}, x, x		
группы – краткое описание	6		4 m . m	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{X}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}$, \bar{X} , $\frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, x$	$\frac{1}{2}, \frac{1}{2}, \overline{X}$
элементов симметрии	3		4 m . m $4/m m . m$	$x,0,0$ $\frac{1}{2},0,0$	$\bar{x}, 0, 0$ $0, \frac{1}{2}, 0$	0, x, 0 $0, 0, \frac{1}{2}$	$0, \bar{x}, 0$	0, 0, x	$0,0,ar{x}$
	3	c	4/m m .m	$0, \frac{1}{2}, \frac{1}{2}$	$\tfrac{1}{2},0,\tfrac{1}{2}$	$\tfrac{1}{2},\tfrac{1}{2},0$			
Pbam Pm-3m C2/m			m 3 m m 3 m	$ \frac{1}{2}, \frac{1}{2}, \frac{1}{2} $ $ 0, 0, 0 $					


1.4 Пространственная группа


Нестандартные установки – необычный выбор элементарной ячейки

Fd-3mZ – нестандартный выбор начала координат (сдвиг на 1/8, 1/8, 1/8)

С1 – **С**-центрировка для триклинной ячейки


CRYSCON

1.5 Симметрия свойств кристалла

- Симметрия функций физических величин кристалла (ρ,φ и т.п.) характеризуется только элементами симметрии, общими с пространственной группой кристалла.
- 2. Симметрия наблюдаемых величин характеризуется только элементами симметрии, общими с **точечной** группой кристалла (принцип Неймана).
- 3. Симметрия кристалла под внешним воздействием = пересечение элементов симметрии кристалла и симметрии воздействия.

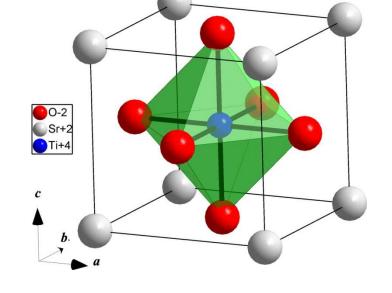
Спиновая плотность в антиферромагнетиках и ферримагнетиках – черно- белые и цветные группы симметрии.

2. Структура кристалла.

Основная информация о структуре кристалла:

- 1. Параметры + объем элементарной ячейки.
- 2. Сингония.
- 3. Пространственная группа (символ + номер)
- 4. Число формульных единиц Z.
- 5. Симметрически неэквивалентные атомы:
 - 5.1 Тип атома.
 - 5.2 Wyckoff number (кратность позиции)
 - 5.3 Заселенность позиции (g).
 - 5.4 Координаты позиции.
 - 5.5 Параметры атомного смещения?
- 6. Дополнительная информация (структурный тип и т.п.)

2. Структура кристалла.


SrTiO₃ – титанат стронция

1.
$$a = b = c = 3.9046 \text{ Å}, \ \alpha = \beta = \gamma = 90^{\circ},$$

$$V = 59.53 \text{ Å}$$

- 2. Кубическая сингония $Pm\overline{3}m$
- 3. Пространственная группа:

$$4. Z = 1$$

5. Атомные позиции:

Атом	Позиция	g	x/a	y/b	z/c
Sr	1 <i>a</i>	1.0	0.0	0.0	0.0
Ti	1 <i>b</i>	1.0	0.5	0.5	0.5
О	3 <i>c</i>	1.0	0.5	0.5	0.0

В ряде программ (SHELX, Jana) заселенность указывается относительно кратности общей позиции: здесь для Sr и Ti = 1/48, для O = 3/48 = 1/16.

2. Структура кристалла. Метрика ячейки.

Кристаллографические координаты – координаты в базисе векторов элементарной ячейки

$$\mathbf{a} = (x_a, y_a, z_a)$$

$$\mathbf{b} = (x_b, y_b, z_b)$$

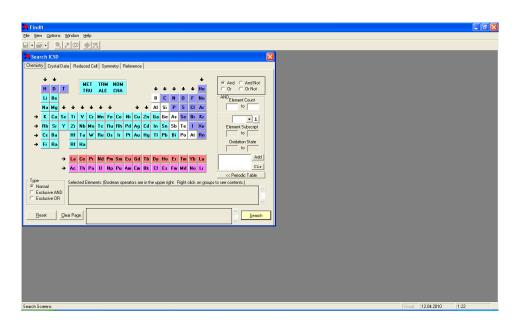
$$\mathbf{c} = (x_c, y_c, z_c)$$

$$A = \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

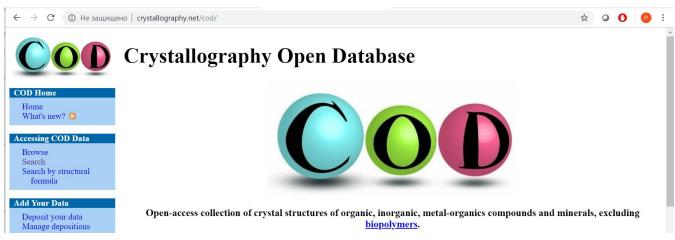
$$(x, y, z) = (A^{-1})^T (x_e, y_e, z_e)$$

Метрический тензор и скалярное произведение в кристаллографических координатах

$$g_{ij} = A \times A \times \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = A \times A \qquad |A| = V_{cell} \Rightarrow |g_{ij}| = V_{cell}^2 \qquad \mathbf{xy} = g_{ij} x_i y_j$$


Именно поэтому говорят о метрике элементарной ячейки

2.2 CIF-файл.


```
data 18166-ICSD
#02005 by Fachinformationszentrum Karlsruhe, and the U.S. Secretary of
#Commerce on behalf of the United States. All rights reserved.
_database_code_ICSD
                                    18166
_audit_creation_date
                                    1980/01/01
_audit_update_record
                                    2000/07/15
_chemical_name_systematic
                                    'Calcium Carbonate'
                                    'Ca (C 03)'
_chemical_formula_structural
                                    'C1 Ca1 03'
_chemical_formula_sum
_chemical_name_mineral
                                    Calcite
_publ_section_title
Position and termal parameters of oxygen atoms in calcite
loop_
_citation_id
_citation_journal_abbrev
_citation_year
_citation_journal_volume
_citation_page_first
_citation_page_last
_citation_journal_id_ASTM
primary 'Acta Crystallographica (1,1948-23,1967)' 1965 18 689 693 ACCRA9
loop_
_publ_author_name
Chessin, H.
'Hamilton, W.C.'
'Post, B.
_cell_length_a
                                    4.9900(2)
_cell_length_b
                                    4.9900(2)
_cell_length_c
                                    17.002(1)
_cell_angle_alpha
                                    90.
_cell_angle_beta
                                    90.
_cell_angle_gamma
                                    120.
_cell_volume
                                    366.63
_cell_formula_units_Z
                                    'R -3 c H'
_symmetry_space_group_name_H-M
_symmetry_Int_Tables_number
                                    167
_refine_ls_R_factor_all
                                    0.036
```

2.3 Структурные базы данных.

1. FIZ/NIST ICSD:

2. http://crystallography.net

