

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Решение кристаллических структур по порошковым дифракционным данным.

Наши планы 2025 - изменения

Тип	Nº	Тема	Дата
Лекция		11 Решение структур	15.10.2024
Лекция		12 Метод Ритвельда	20.10.2024
Лекция		Дифракция на несовершенных 13 кристаллах	22.10.2024
Практикум		2 Анализ методом ЛеБеля + решение	27.10.2024
Практикум		3 Уточнение структуры	29.10.2024
Лекция		14 Количественный РФА	01.11.2024
Контрольная		2Вторая часть курса	05.11.2024

Содержание

- 1. Математические особенности задачи о решении кристаллической структуры. Проблема фаз. Исходная модель.
- 2. Решение кристаллических структур.
 - 2.1 Поиск изоструктурного соединения
 - 2.2 Функция Паттерсона
 - 2.3 Прямые методы
 - 2.4 Методы прямого пространства
 - 2.5 Charge flipping
- 3. Фурье-синтез

Экспериментально регистрируемая величина – интенсивность дифракционного максимума:

Монокристалл (в первом приближении):

$$I_{hkl} = kI_0 P \big| F_{hkl} \big|^2$$

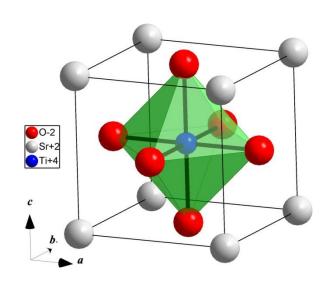
Порошок (однофазный образец):

$$I(2\theta) = B(2\theta) + k \sum_{h,k,l} p_{hkl} \times |F_{hkl}|^2 \times LPG \times T_{hkl} \times E \times P_{hkl} (2\theta_{hkl} - 2\theta)$$

Т.о. в ходе эксперимента мы получаем информацию о |F|, но не о фазах φ

$$F_{hkl} = |F_{hkl}|e^{i\varphi_{hkl}}$$

Структура → Дифрактограмма – прямая задача

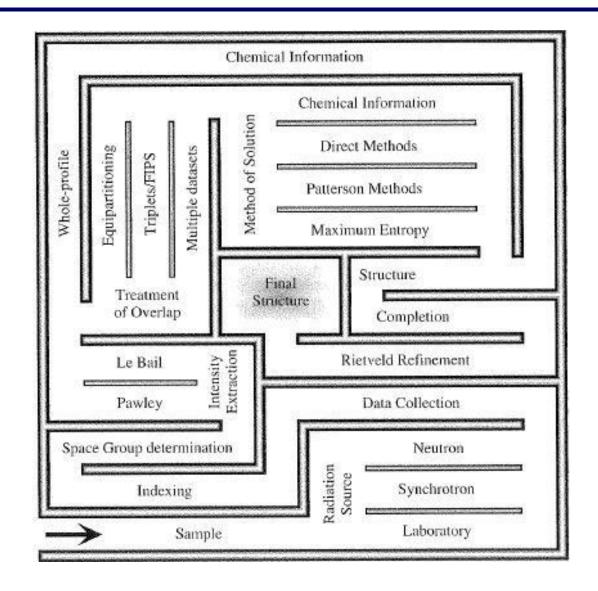


Дифрактограмма → **Структура** – обратная задача

Решение кристаллической структуры: определение параметров кристаллической структуры (a,b,c, пространственная группа, координаты атомов) с точностью, обеспечивающей возможность дальнейшего уточнения указанных параметров по процедуре МНК (окрестность глобального минимума)

В принципе, дифрактограмма ↔ структура = взаимно однозначное соответствие

Если мы определили исходную модель, то...



$$F_{hkl}^{calc} = \sum_{j} g_{j} t_{j} (\mathbf{q}_{hkl}) e^{2\pi i (hx_{j} + ky_{j} + lz_{j})} F_{atom}^{j} (\mathbf{q}_{hkl})$$

$$\{F_{hkl}|_{\exp}\} \longleftrightarrow \{F_{hkl}|_{calc}\}, \min \Phi = \sum_{hkl} w (F_{hkl}|_{calc} - |F_{hkl}|_{\exp})^{2}$$

$$unu$$

$$\{F_{hkl}|_{\exp}^{2}\} \longleftrightarrow \{F_{hkl}|_{calc}^{2}\}, \min \Phi = \sum_{l,l,l} w (F_{hkl}|_{calc}^{2} - |F_{hkl}|_{\exp})^{2}$$

"Structure Determination from Powder Diffraction Data" (Edited by W.I.F. David et al.)

Необходимые «шаги» для успешного решения структуры

Получение однофазного образца с хорошей кристалличностью

Съёмка рентгеновского эксперимента высокого качества

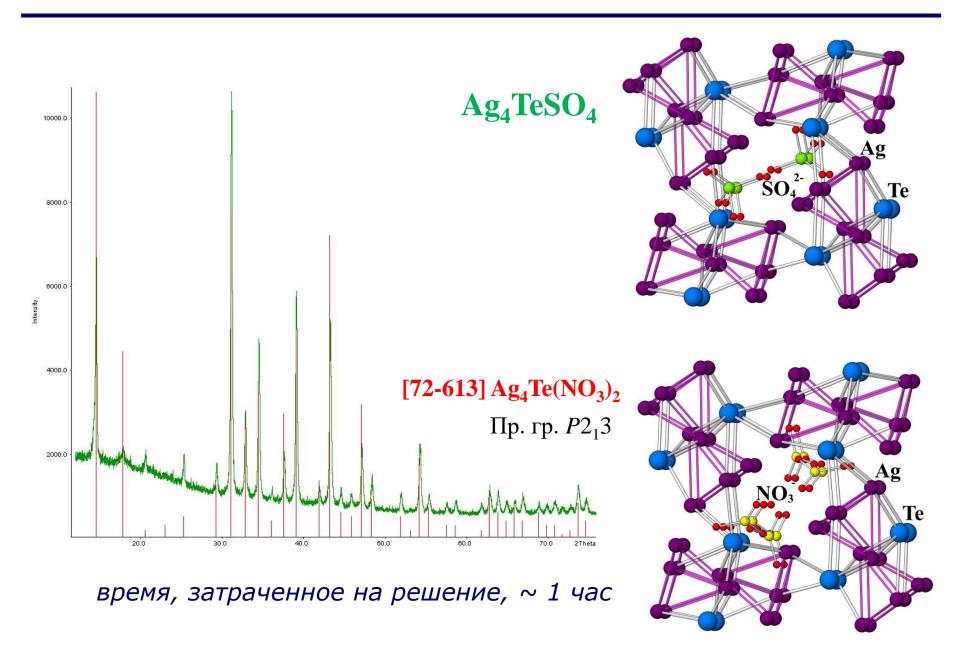
Индицирование

Извлечение величин интенсивностей рефлексов

Поиск модели кристаллической структуры (решение)

Уточнение структуры методом Ритвельда

1.1 Выбор пространственной группы


1. Определение сингонии кристалла из результатов индицирования

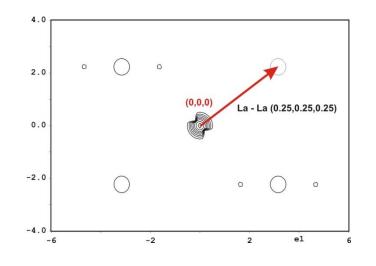
- 1.1 Может приводить к ошибкам (близкие по модулям вектора и т.п.)
- 1.2 Всегда руководствуйтесь правилами выбора ячейки: ячейка с максимальной симметрией наименьшего объема.

2. Анализ систематических погасаний рефлексов

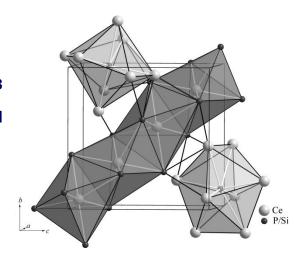
- 2.1 Центрировки
- 2.2 Открытые элементы симметрии (если есть)
- 3. Выбор *наиболее высокосимметричной группы*, удовлятворяющей условиям 1 и 2.
- 4. Дальнейшее уточнение данных о симметрии кристалла в ходе решения/уточнения структуры

2.1 Поиск изоструктурного соединения

2.2 Решение кристаллических структур. Функция Паттерсона.


Функция Паттерсона – рассчитывается из экспериментальных данных

$$P(u, v, w) = \frac{1}{V} \sum_{h,k,l} |F_{hkl}|^2 \cos(2\pi i (hu + kv + lw))$$


Соответствует свертке функции электронной плотности с самой собой:

$$P(u, v, w) = \int_{\Omega} \rho(\mathbf{r} - \mathbf{r}_{uvw}) \rho(\mathbf{r}) d\mathbf{r}$$

Максимумы функции Паттерсона – межатомные вектора

 $La_4(P_{0.64}[C_2]_{0.36})_3$ структурный тип анти- Th_3P_4

2.3 Решение кристаллических структур. Прямые методы.

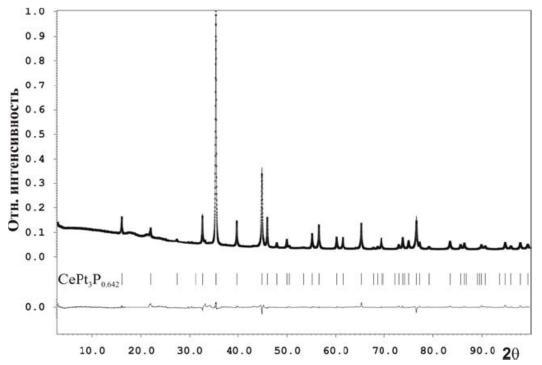
На самом деле, информация о фазах скрыта в распределении |F|!

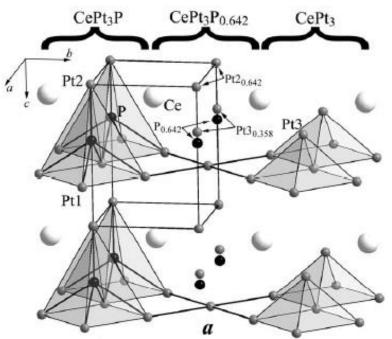
$$\rho(x, y, z) = \sum_{h,k,l} |F_{hkl}| e^{i\varphi_{hkl}} e^{2\pi i(hx + ky + lz)} \ge 0 \forall x, y, z$$

Карле, Хауптманн – Нобелевская премия по химии 1986

Для наиболее сильных рефлексов:

$$\varphi_1 + \varphi_2 + \varphi_3 = 0$$
 если $\mathbf{q}_1 + \mathbf{q}_2 + \mathbf{q}_3 = 0$


т.н. опорные амплитуды


Дальнейшее расширение пространства амплитуд – формула тангенсов

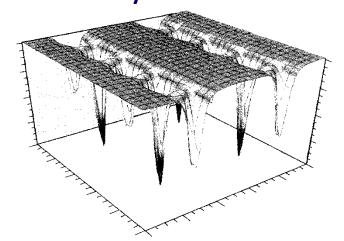
Все это хорошо для монокристалла, но плохо для порошка

2.3 Решение кристаллических структур. Прямые методы.

- 1. Индицирование дифрактограммы (Р4???, a = 4.0400 Å, c = 5.4694 Å)
- 2. Метод ЛеБеля (|F|).
- 3. SEM+EDX (Ce:Pt:P)
- 4. EXPO (для P4/mmm)
- 5. Понижение симметрии до *Р*4*mm*

В результате решена структура, которую можно было бы решить, подобрав изоструктурное соединение (CePt₃Si).

2.4 Методы прямого пространства


simulated annealing (SA)

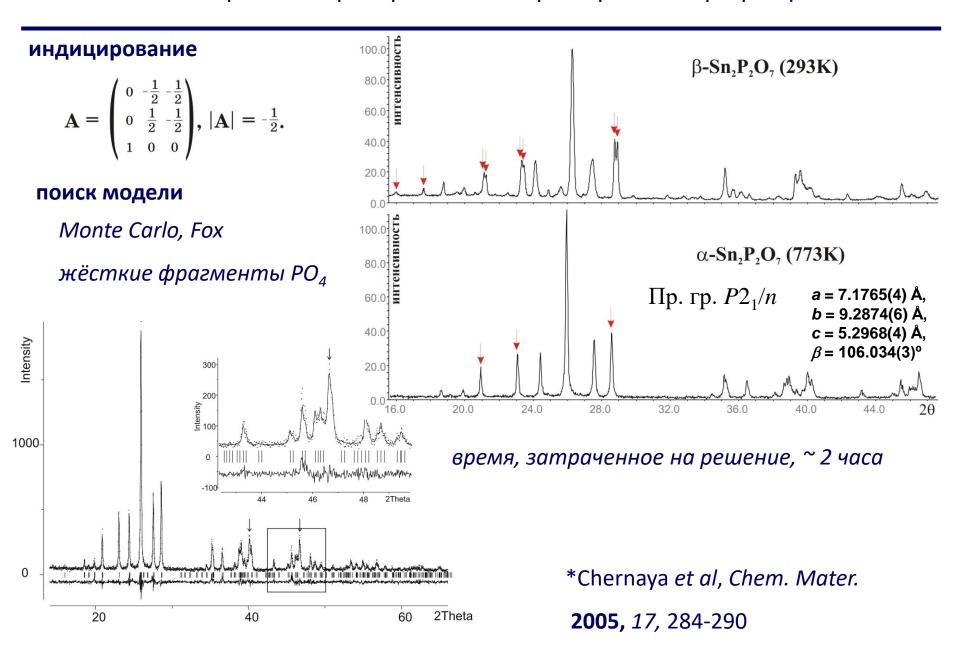
Monte Carlo

grid search

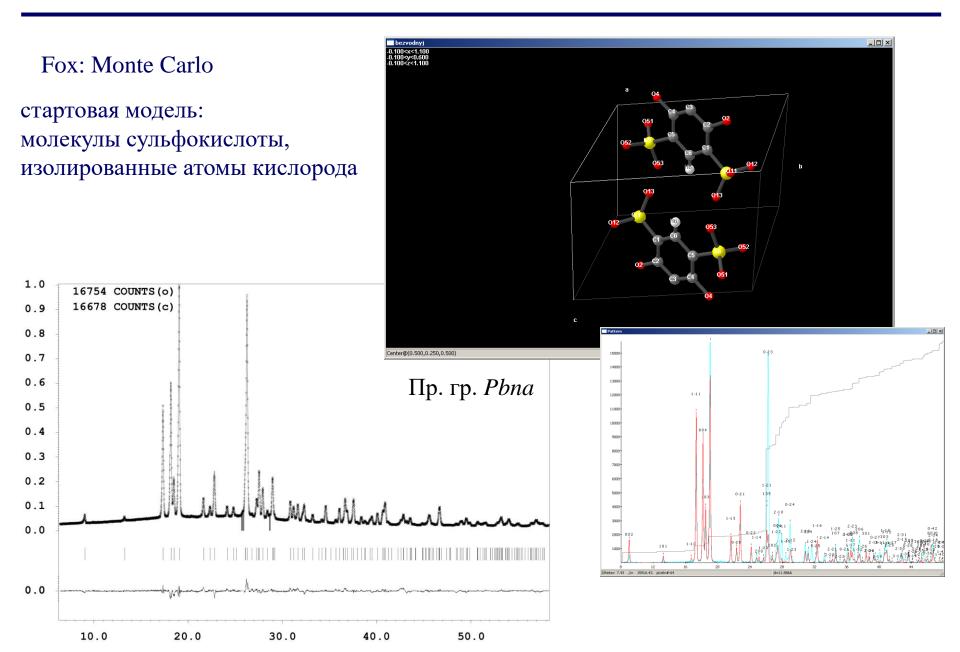
genetic algorithm (GA)

трудности с поиском глобального минимума

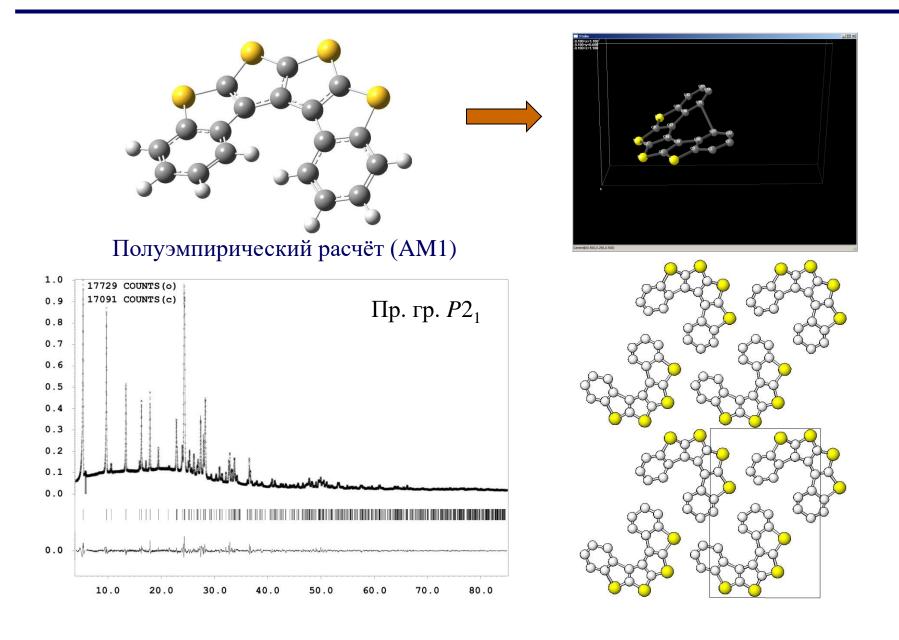
"Monte-Carlo-like" methods


This is a "last chance" program which we recommend to use only after failing with classical methods (Direct and Patterson methods)

A. Le Bail


(manual for "Espoir")

использование совокупности знаний об устройстве молекулы


2.4 Методы прямого пространства – пример для пирофосфата олова.

2.4 Методы прямого пространства – пример для сульфокислот.

2.4 Методы прямого пространства.

2.4 Charge flipping

1. Принимаем все фазы равными нулю (или случайным числам), рассчитываем электронную плотность.

$$\rho_1(u, v, w) = \sum_{h,k,l} |F_{hkl}^{obs}| e^{i\varphi_{hkl}} e^{2\pi i(hu+kv+lw)}$$

2. Получаем, что $\rho(r) < 0$ в каких-то областях. Берем модуль этой функции в качестве новой электронной плотности.

$$\rho_1'(u,v,w) = |\rho_1(u,v,w)|$$

3. Для новой функции $\rho(r)$ рассчитываем структурные амплитуды:

$$F_{hkl}^{calc} = \left| F_{hkl}^{calc} \right| e^{i\varphi_{hkl}^{calc}} = \frac{1}{V} \int_{\Omega} \rho_1'(u, v, w) e^{-2\pi i(hu + kv + lw)} du dv dw$$

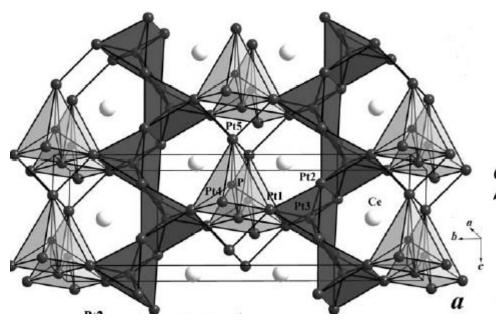
4. Делаем новый Фурье-синтез с наблюдаемыми |F| и рассчитанными фазами:

$$\rho_2(u,v,w) = \sum_{h,k,l} |F_{hkl}^{obs}| e^{i\varphi_{hkl}^{calc}} e^{2\pi i(hu+kv+lw)}$$

5. Переходим к шагу 2.

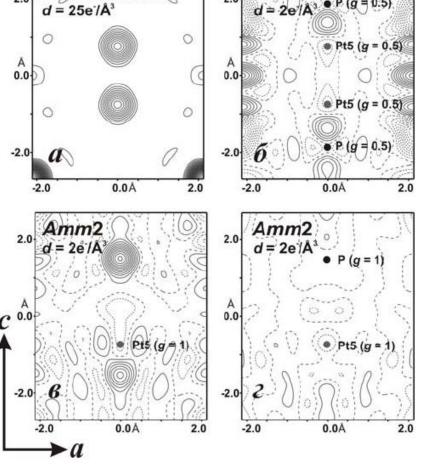
6. Все сошлось (?????)! Только для протяженного эксперимента.

3. Фурье-синтез


1. Прямой Фурье-синтез.

$$\rho(u,v,w) = \sum_{h,k,l} |F_{hkl}^{obs}| e^{i\varphi_{hkl}^{calc}} e^{2\pi i(hu+kv+lw)}$$

2. Разностный Фурье-синтез.


$$\rho(u,v,w) = \sum_{h,k,l} \left| F_{hkl}^{obs} - F_{hkl}^{calc} \right| e^{i\varphi_{hkl}^{calc}} e^{2\pi i(hu+kv+lw)}$$

Ce₂Pt₈P

Поиск «недостающих» атомов, проверка пространственной группы...

Ammm/Amm2

Summary

- 1. Решение структуры по порошку не беспроигрышная лотерея.
- 2. Привлекайте все(!) доступные методы установления структурных данных.
- 3. Чем проще выбранный метод тем лучше.
- 4. Фурье-синтез друг кристаллографа. Но помните о возможных артефактах!
- 5. Charge flipping сейчас на коне.