

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

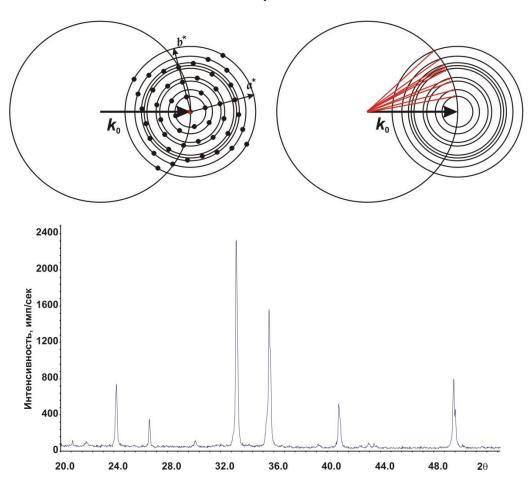
Практические подходы к индицированию дифрактограмм.

Содержание

1. Основная задача индицирования

2. Уточнение параметров элементарной ячейки

- 2.1 МНК для линеаризованной задачи.
- 2.2 Критерии правильности индицирования.
- 2.3 Экспериментальные ошибки


3. Индицирование дифрактограмм неизвестных соединений

- 3.1 Математические основы метода
- 3.2 Индицирование дифрактограммы кубического соединения
- 3.3 Автоматическое индицирование
- 3.4 Выбор пространственной группы

1. Основная задача индицирования

Основная задача индицирования – определение \mathbf{a}^* , \mathbf{b}^* , \mathbf{c}^* , и, следовательно, \mathbf{a} , \mathbf{b} , \mathbf{c}

Порошок – модули векторов и углы между ними

Межплоскостное расстояние $d = \lambda/2\sin\theta$ – профильный анализ

$$\frac{1}{d^2} = \left| h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* \right|^2$$

$$Q = \frac{10000}{d^2}$$

$$d = f(a, b, c, \alpha, \beta, \gamma)$$

2. Уточнение параметров элементарной ячейки

Общее выражение для d:

$$\frac{1}{d^2} = \frac{\frac{h^2}{a^2 \sin^2 \alpha} + \frac{2kl}{bc} (\cos \beta \cos \gamma - \cos \alpha) + \frac{k^2}{b^2 \sin^2 \beta} + \frac{2kl}{ac} (\cos \alpha \cos \gamma - \cos \beta) + \frac{l^2}{c^2 \sin^2 \gamma} + \frac{2kk}{ab} (\cos \alpha \cos \beta - \cos \gamma)}{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma}$$

Несколько проще для высших сингоний

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Кубическая

$$\frac{1}{d^2} = \frac{4}{3} \frac{h^2 + k^2 + hk}{a^2} + \frac{l^2}{c^2}$$

Гексагональная

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

Тетрагональная

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Орторомбическая

$$\frac{1}{d^{2}} = \frac{h^{2}}{a^{2} \sin^{2} \beta} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2} \sin^{2} \beta} + \frac{2hl \cos \beta}{ac \sin^{2} \beta}$$

Моноклинная

2.1 МНК линеаризованной задачи

Но в любом случае:

$$\frac{1}{d^{2}} = Ah^{2} + Bk^{2} + Cl^{2} + Dhk + Ehl + Fkl$$

Тогда для n рефлексов:

$$Ah_{1}^{2} + Bk_{1}^{2} + Cl_{1}^{2} + Dh_{1}k_{1} + Eh_{1}l_{1} + Fk_{1}l_{1} = Q_{1}$$

$$Ah_{2}^{2} + Bk_{2}^{2} + Cl_{2}^{2} + Dh_{2}k_{2} + Eh_{2}l_{2} + Fk_{2}l_{2} = Q_{2}$$

$$Ah_{3}^{2} + Bk_{3}^{2} + Cl_{3}^{2} + Dh_{3}k_{3} + Eh_{3}l_{3} + Fk_{3}l_{3} = Q_{3}$$

$$...$$

$$Ah_{n}^{2} + Bk_{n}^{2} + Cl_{n}^{2} + Dh_{n}k_{n} + Eh_{n}l_{n} + Fk_{n}l_{n} = Q_{n}$$

Очевидно, что задача является вариационной... Применяем метод МНК

2.1 МНК линеаризованной задачи

$$\begin{pmatrix} h_1^2 & k_1^2 & l_1^2 & h_1 k_1 & k_1 l_1 & h_1 l_1 \\ h_2^2 & k_2^2 & l_2^2 & h_2 k_2 & k_2 l_2 & h_2 l_2 \\ & & & & \\ h_m^2 & k_m^2 & l_m^2 & h_m k_m & k_m l_m & h_m l_m \end{pmatrix} \times \begin{pmatrix} A \\ B \\ C \\ D \\ E \\ F \end{pmatrix} = \begin{pmatrix} Q_1 + \varepsilon_1 \\ Q_2 + \varepsilon_2 \\ \dots \\ Q_m + \varepsilon_m \end{pmatrix}, \, \text{или}$$

$$\mathbf{A} \times \mathbf{X} = \mathbf{Q}$$

И тогда:

$$\mathbf{X} = \left(\mathbf{A}^T \times \mathbf{A}\right)^{-1} \times \left(\mathbf{A}^T \times \mathbf{Q}\right)$$

N	Н	K	L	Int.	d[obs]	Q[obs]	h2+k2+l2	Q[calc]
1 *	1	1	0	0.3	8.8360	128.1	2	128.0
2 *	2	0	0	11.8	6.2538	255.7	4	256.0
3 *	2	1	0	7.2	5.5934	319.6	5	320.0
4 *	2	1	1	23.3	5.1057	383.6	6	383.9
5 *	2	2	0	1.5	4.4208	511.7	8	511.9
6 *	2	2	1	6.2	4.1682	575.6	9	575.9
7 *	3	1	0	8	3.9542	639.6	10	639.9
8 *	3	1	1	59.7	3.7700	703.6	11	703.9
9 *	2	2	2	21.8	3.6092	767.7	12	767.9
10 *	3	2	0	8.3	3.4674	831.7	13	831.8
11 *	3	2	1	44.9	3.3414	895.7	14	895.9
12 *	4	0	0	21.2	3.1255	1023.7	16	1023.9
13 *	4	1	0	60	3.0321	1087.7	17	1087.9
14 *	3	3	0	100	2.9467	1151.7	18	1151.8
15 *	3	3	1	3.4	2.8680	1215.7	19	1215.8
16 *	4	2	0	36.8	2.7955	1279.6	20	1279.8
17 *	4	2	1	24.1	2.7282	1343.5	21	1343.8
18 *	3	3	2	47.5	2.6654	1407.6	22	1407.8
19 *	4	2	2	15.3	2.5520	1535.5	24	1535.7
20 *	4	3	0	17.4	2.5002	1599.7	25	1599.7
21 *	5	1	0	46.3	2.4516	1663.8	26	1663.8
22 *	5	1	1	2.4	2.4058	1727.8	27	1727.8
23 *	5	2	0	10.6	2.3214	1855.7	29	1855.7
24 *	5	2	1	6.8	2.2823	1919.8	30	1919.6
25 *	4	4	0	11.6	2.2098	2047.8	32	2047.6
26 *	4	4	1	6.4	2.1761	2111.7	33	2111.7
27 *	5	3	0	8.3	2.1438	2175.9	34	2175.7
28 *	5	3	1	9.2	2.1130	2239.8	35	2239.5
29 *	6	0	0	9.3	2.0834	2303.9	36	2303.6
30 *	6	1	0	1.3	2.0550	2368.0	37	2367.5
31 *	6	1	1	11.7	2.0279	2431.7	38	2431.7
32 *	6	2	0	2	1.9765	2559.8	40	2559.5
33 *	5	4	0	15.2	1.9523	2623.7	41	2623.7
34 *	5	4	1	20.7	1.9289	2687.7	42	2687.7
35 *	5	3	3	3.1	1.9063	2751.8	43	2751.5
36 *	6	2	2	1.7	1.8845	2815.8	44	2815.5
37 *	6	3	0	4.7	1.8635	2879.7	45	2879.7
38 *	6	3	1	23.1	1.8431	2943.8	46	2943.4
39 *	4	4	4	0.5	1.8041	3072.4	48	3071.4
40 *	6	3	2	9.7	1.7858	3135.7	49	3135.3

File title: Hg7SnP4Br6

Number of accepted peaks: 111

2Theta window: 0.050 Symmetry: Cubic P

Spacegroup: P 21 3 (No. 198)

Refined cell parameters:

Cell_A : 12.50099(7)

Cell_Volume: 1953.591(19)

Number of single indexed lines: 111

Number of unindexed lines : 0

$$F(30) = 327.7 (0.003, 32)$$

- 1. Отклонение от расчётных значений.
- 2. Количество возможных линий.

Критерий M_{20} (Де-Вольф)

$$\mathbf{M}_{20} = \frac{\mathbf{Q}_{20}}{2 \ \overline{\epsilon} \ \mathbf{N}_{\text{poss.}}},$$

где

 Q_{20} - значение $Q_{\text{эксп.}}$ для 20-й линии;

 $N_{poss.}$ - число теоретически возможных линий, включая полученную 20-ю;

 $\overline{\epsilon}$ - среднее расхождение между $Q_{\text{расч.}}$ и $Q_{\text{эксп.}}$ для всех линий с $\leq Q_{20}$

 $M_{20}>30$: индицирование корректно

Критерий F_N (Figure-of-Merit) (Смит-Снайдер)

$$\mathbf{F}_{N} = \left(\frac{1}{|\overline{\Delta 2\theta}|}\right) \left(\frac{N}{N_{poss}}\right),$$

где N - количество наблюдаемых линий;

 $N_{poss.}$ - число теоретически возможных линий;

 $|\overline{\Delta 2\theta}|$ - средняя абсолютная разница между $2\theta_{\text{расч.}}$ и $2\theta_{\text{эксп.}}$

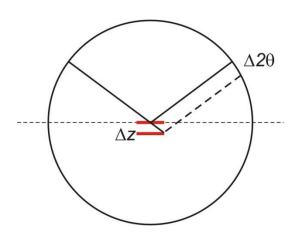
 $F_{30} > 20$: индицирование корректно

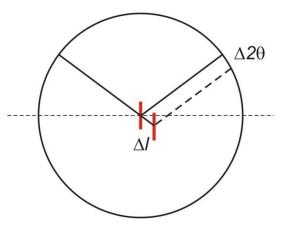
Число теоретически возможных линий

Необходимо учитывать все погасания, найденные на рентгенограмме, и не включать их в значение $N_{poss.}$.

Систематические наложения рефлексов:

- а). Только один набор индексов для плоскости (без учёта фактора повторяемости): например, (100) для кубической сингонии, а не все шесть возможных.
- б). Некоторым различным наборам *hkl* могут соответствовать одинаковые межплоскостные расстояния (например, (333) и (511) для кубической сингонии).


Для случайно налагающихся рефлексов, имеющих примерно одинаковые значения d (которые не могут быть экспериментально разделены), все различные индексы считаются в N и $N_{poss.}$ как отдельные линии.


Полезные советы

- чем точнее обработка, тем легче расчёты
- линии с большими d наиболее важны для определения параметра
- уточняйте параметры индицирования по сильным линиям по мере индицирования
- разброс ошибок ∆Q должен быть одинаковым для <u>всех</u> углов
- ВСЕ сильные линии должны быть проиндицированы

4. Ошибки эксперимента

Сдвиг образца из центра окружности гониометра

$$\Delta 2\theta \propto \cos \theta = \arcsin \left[\frac{2\Delta z \cos \theta}{R} \right]$$

$$\Delta 2\theta \propto \sin \theta$$

Помните, для reflection:

$$\Delta z = l_{eff} = \frac{1}{2\mu}$$

3. Индицирование дифрактограмм неизвестных соединений

$$\frac{1}{d^{2}} = Ah^{2} + Bk^{2} + Cl^{2} + Dhk + Ehl + Fkl$$

Для набора линий с неизвестными hkl необходимо подобрать индексы

Методы индицирования рентгенограмм

- 1. Аналитические (вручную)
- 2. Автоиндицирование (программы)
- 3. Подбор изоструктурного соединения
- 4. Метод гомологии

3.1 Индицирование дифрактограммы кубического соединения

D	2Theta	Q	Q/Q1	Q/Q0	
3.6190	24.579	763.52	1.00	3.00	
3.1334	28.462	1018.52	1.33	4.00	
2.8026	31.906	1273.11	1.67	5.00	
2.3688	37.953	1782.09	2.33	7.00	
2.2152	40.697	2037.78	2.67	8.01	
1.8898	48.110	2800.07	3.67	11.00	
1.8095	50.390	3054.18	4.00	12.00	
1.7386	52.597	3308.10	4.33	13.00	
1.6187	56.834	3816.61	5.00	15.00	
1.5201	60.893	4327.49	5.67	17.00	
1.4382	64.767	4834.38	6.33	19.00	
1.4018	66.666	5088.94	6.67	20.00	
1.3678	68.548	5344.83	7.00	21.00	
1.3069	72.229	5854.70	7.67	23.00	
1.2795	74.029	6107.99	8.00	24.00	
1.2532	75.853	6367.00	8.34	25.02	
1.2063	79.373	6872.54	9.00	27.00	

$$Q_0 = Q_1/3 \approx 254.5$$

$$h^2 + k^2 + l^2 = 1,2,3,4,5,6,8,9,10,11,12,13,14,16...$$

Есть сумма 7 - Необходимо уменьшить Q_0 !

3.1 Индицирование дифрактограммы кубического соединения

D	2 θ	Q	Q/Q ₁	Q/Q ₀	h	k	1
3.6190	24.579	763.52	1.00	6.00	2	1	1
3.1334	28.462	1018.52	1.33	8.00	2	2	0
2.8026	31.906	1273.11	1.67	10.00	3	1	0
2.3688	37.953	1782.09	2.33	14.00	3	2	1
2.2152	40.697	2037.78	2.67	16.01	4	0	0
1.8898	48.110	2800.07	3.67	22.00	3	3	2
1.8095	50.390	3054.18	4.00	24.00	4	2	2
1.7386	52.597	3308.10	4.33	26.00	4	3	1
1.6187	56.834	3816.61	5.00	29.99	5	2	1
1.5201	60.893	4327.49	5.67	34.01	5	3	0
1.4382	64.767	4834.38	6.33	37.99	6	1	1
1.4018	66.666	5088.94	6.67	39.99	6	2	0
1.3678	68.548	5344.83	7.00	42.00	5	4	1

 $Q_0 = 127.27(4), a^2 = 10000/Q, a = 8.8641(14) Å$

Средние сингонии

	Dpg	tt[Y]	h(Y)	k[Y]	I[Y]	Q(Y)	A[Y]	B[Y]
. 1	8	11.051	0	0	1	156.25	_	1
2	4	22.206	0	0	2	625	_	4
3	3	29.757	1	0	0	1111.11111	1	
4	2.80899	31.832	1	0	1	1267.35888		1.55
5	2.66667	33.58	0	0	3	1406.24648	-	8.99998
6	2.4	37.442	1	0	2	1736.11111	24	12
7	2.12132	42.584	1	1	0	2222.22294	2	10
8	2.05046	44.132	1	1	1	2378.46846	-	72
9	2	45.306	0	D	4	2500	_	16
10	1.99309	45.472	1	0	3	2517.36494	-	-
11	1.87409	48.539	1	1	2	2847.20746	:-	1
12	1.6641	55.148	1	D	4	3611.11367	1,-	100
13	1.66011	55.292	1	1	3	3628.49283	-	-
14	1.6	57.559	a	D	5	3906.25		25
15	1.5	61.799	2	0	0	4444.44444	4	
16	1.47431	62.998	2	0	1	4600.68371	7-	72
17	1.45521	63.921	1	1	4	4722.24656	_	_
18	1.41176	66.135	1	0	5	5017.39456	-	-
19	1.40449	66.522	2	0	2	5069.47163		S.
20	1.34164	70.08	2	1	0	5555.56207	5.00001	2.
21	1.33333	70.581	0	0	6	5625.02813	-	36.00018
22	1.32316	71.206	2	1	1	5711.83	0 -2	100
23	1.30736	72.201	2	0	3	5850.72403	92	9
24	1.27739	74.174	1	1	5	6128.48286	7-	74
25	1.272	74.541	2	1	2	6180.53083	_	100
26	1.21842	78.427	1	0	6	6736.06023	-	1.00
27	1.2	79.87	2	0	4	6944.44444	5 	3.0
28	1.1985	79.99	2	1	3	6961.83816	0	0.00
29	1.14286	84.755	0	0	7	7656.21172	S-2	48.99976
30	1.12887	86.058	1	1	6	7847.15329		-
31	1.11417	87.476	2	1	4	8055.5849	8-	12
32	1.09/31	89 484	2	n	Ę	8350 63044	100	140

Пример: тетрагональная ячейка a = 3 Å c = 8 Å

два независимых ряда по Q (hk0) + (00l)

3.2 Метод Хесса - Липсона

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2} \qquad \lambda = 2d\sin\theta$$

$$\sin^2 heta_{hkl} = A'h^2 + B'k^2 + C'l^2$$
 , где $A' = \frac{\lambda^2}{4} imes \frac{1}{a^2}$ и т.д.

Тогда:

$$\sin^2 \theta_{h00} = A'h^2$$
 $\sin^2 \theta_{0k0} = B'k^2$ $\sin^2 \theta_{00l} = C'l^2$

T.e.

$$\sin^2 \theta_{hkl} = \sin^2 \theta_{h00} + \sin^2 \theta_{0k0} + \sin^2 \theta_{00l}$$

откуда:

$$\sin^2 \theta_{00l} = \sin^2 \theta_{hkl} - \sin^2 \theta_{hk0}$$
 \Longrightarrow $\Delta \sin^2 \theta_{0k0} = \sin^2 \theta_{hkl} - \sin^2 \theta_{h0l}$ и так далее...

$$Q_{hkl} = h^2 A + k^2 B + l^2 C + hk D_1 + kl D_2 + hl D_3$$

Надо найти 3 вектора обратной решётки (6 линий)

Можно рассматривать следующие соотношения:

$$\mathbf{Q}_{hk0} = h^2 a^{*2} + k^2 b^{*2} + 2hka^*b^*\cos\gamma^*$$
, или $\mathbf{Q}_{hk0} = h^2 \mathbf{A} + k^2 \mathbf{B} + hk \mathbf{D}_1$ тогда:

$$Q_{hk0}-Q_{har{k}0}=2hkD_1$$
 $Q_{hk0}+Q_{har{k}0}=2(Q_{h00}+Q_{0k0})$ и так далее...

3.2 Программы автоиндицирования

ITO

J. Visser, J. Appl. Cryst. 2, 89-95 (1969)

Основан на математических соотношениях в обратной решётке. Особенно удобен для низших симметрий.

TREOR

P.-E. Werner et. al, J.Appl.Cryst. **18**, 367-370 (1985)

Использует метод проб и ошибок при переборе Миллеровских индексов для выбранных базовых линий.

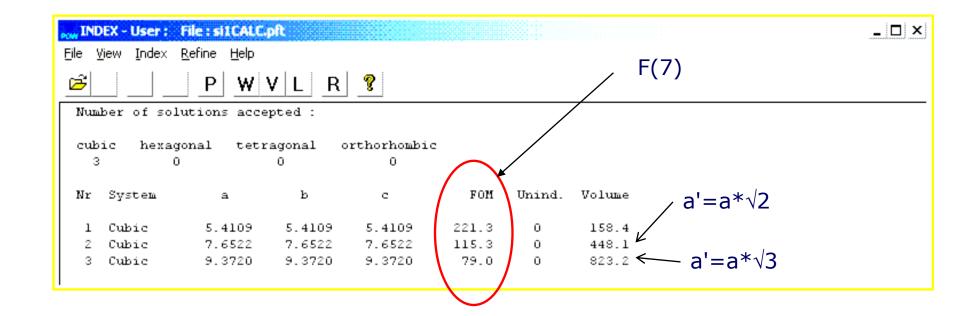
Особенно удобен для ромбической и высших симметрий.

DICVOL

A.Boultif & D.Louër, J.Appl.Cryst. **24**, 987-993 (1991)

Метод последовательного разложения.

Работает для всех симметрий


3.2 Типичные ошибки при индицировании

Почему это важно?

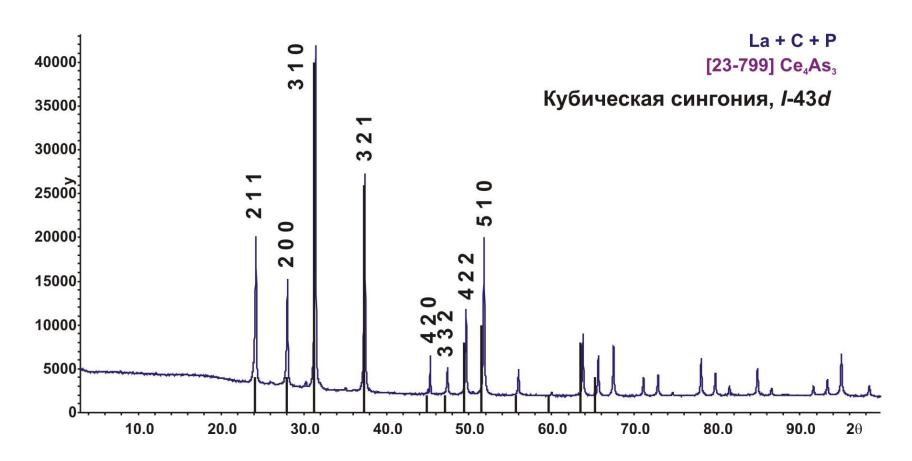
очень легко проиндицировать рентгенограмму неправильно

- в более низкой симметрии
- с завышенными параметрами элементарной ячейки
- одну фазу как смесь и наоборот

Пример: автоиндицирование по алгоритму Wisser (Treor) эталона Si ($a\sim5.41\text{Å}$)

Напоминание: три основные сложности при индицировании

- 1) примеси
- 2) неточное определение положения пиков (систематические ошибки)
- 3) "dominant zone"



необходимо постараться минимизировать инструментальные ошибки, приводящие к сдвигу положения пиков (напр., $cos(\theta)$ / $sin(2\theta)$ в Б-Б геометрии)

предпочтительно использование внутреннего стандарта (Si, Ge...)

необходимо корректное описание профиля («хорошая» профильная функция, асимметрия...)

3.3 Подбор изоструктурного соединения

- + Простой и быстрый способ
- + Первые намеки на структуру новой фазы
- Подобрать можно далеко не всегда...

Метод гомологии – тоже метод индицирования!

3.4 Выбор пространственной группы

1. Определение сингонии кристалла из результатов индицирования

- 1.1 Может приводить к ошибкам (близкие по модулям вектора и т.п.)
- 1.2 Всегда руководствуйтесь правилами выбора ячейки: ячейка с максимальной симметрией наименьшего объема.

2. Анализ систематических погасаний рефлексов

- 2.1 Центрировки
- 2.2 Открытые элементы симметрии (если есть)
- 3. Выбор *наиболее высокосимметричной группы*, удовлятворяющей условиям 1 и 2.
- 4. Дальнейшее уточнение данных о симметрии кристалла в ходе решения/уточнения структуры

Summary

- 1. Задача расчета параметров при известных индексах проста и лекго решаема (линейный МНК).
- 2. Задача определения индексов для попрошковой дифрактограммы много сложнее....
- 3. Хорошие образцы + хорошие данные = хорошее индицирование.
- 4. Автоиндицирование это неплохо. Если применять голову + компьютер.
- 5. Подбор изоструктурного соединения, метод гомологии немного больше, чем просто методы индицирования.